3.1 Plot Points in a Coordinate Plane

You graphed numbers on a number line.

You will identify and plot points in a coordinate plane.

Goal: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

You have used a coordinate plane to graph ordered pairs whose coordinates were nonnegative. If you extend the *x*-axis and *y*-axis to include negative values, you divide the coordinate plane into four regions called **quadrants**, labeled I, II, III, and IV as shown.

Points in Quadrant I have two positive coordinates. Points in the other three quadrants have at least one negative coordinate.

For example, point P is in Quadrant IV and has an x-coordinate of 3 and a y-coordinate of -2. A point on an axis, such as point Q, is not considered to be in any of the four quadrants.

Practice A

For use with the lesson "Plot Points in a Coordinate Plane"

Give the coordinates of the points labeled A, B, C, and D.

1.

3.

Plot the point in a coordinate plane. Describe the location of the point.

4.
$$A(-5,0)$$

5.
$$P(-6, 2)$$

6.
$$Q(0, -4)$$

7.
$$V(6, 4)$$

8. *S*(0, 11)

9.
$$T(-3, -5)$$

10. *B*(8, 0)

11. W(2, -2)

12. R(-4, 3)

Go 8 took aught (On-14 x ax.s) Graph the function with the given domain. Then identify the range of

Without plotting the point, tell whether it is in Quadrant I, Quadrant II, Quadrant III, or Quadrant IV.

23. Hourly Pay The table shows the number of hours worked and the corresponding pay in dollars.

Hours worked	1	2	3	5	8
Pay (dollars)	7.50	15.00	22.50	37.50	60

- **a.** Graph the data from the table.
- **b.** Does the graph represent a function? Why or why not?

24. Basketball The table shows the heights (in inches) of players on a high school basketball team and how many players are each height.

Height (inches)	69	70	71	72	73	74	75	76	77
Number of players	0	2	1	4	3	2	1	0	1

- **a.** Graph the data from the table.
- **b.** Does the graph represent a function? Why or why not?

YES - PACIN 1-mt has only loct p-t

Warm-up!

What is a coordinate plane? What are ordered pairs?

Homework

Pages 149-150, # 3 - 27 Odd

Examples!

In the following two examples, name the ordered pairs!

Next one-Graphing!

Graph the following ordered pairs on your graph paper.

More Graphing!

Graph the function with the given domain. Then, give the range.

$$y = 3x - 4$$

Domain: -2, -1, 0, 1, 2

Same Thing-Fractions!

$$y = 3x - 4$$

Domain: -4, -2, 0, 2, 4

Tough One!

Suppose the point (a, b) lies in Quadrant II. Describe the location of the specified point.

(b, a)

(b, -b)

(-2a, 2b)