QualityCore

Reference Sheet for the QualityCore™ Geometry End-of-Course Assessment

Area, Volume, and Surface Area of Polygons and Solids

Triangle $A = \frac{1}{2}bh$

Parallelogram A = bh

Trapezoid $A = \frac{1}{2}(b_1 + b_2)h$

Regular Polygon $A = \frac{1}{2}ap$

Regular Prism V = Bh

SA = 2B + Ph

Right Circular Cylinder $V = \pi r^2 h$

 $SA = 2\pi r^2 + 2\pi rh$

Pyramid $V = \frac{1}{3}Bh$

 $SA = B + \frac{1}{2}PI$

Right Circular Cone $V = \frac{1}{3}\pi r^2 h$

 $SA = \pi r^2 + \pi r I$

Sphere $V = \frac{4}{3}\pi r^3$

 $SA = 4\pi r^2$

A = area

b = base

h = height

a = apothem

p = perimeter

V = volume

B =area of base

SA = surface area

P =perimeter of base

r = radius

I = slant height

 $\pi \approx 3.14$

Angles of Polygons

Sum of Degree Measures of the

Interior Angles of a Polygon

Degree Measure of an Interior Angle

of a Regular Polygon

180(n-2)

 $\frac{180(n-2)}{n}$

n = number of sides

Right Triangles

Right Triangle Trigonometry $\sin A = \frac{a}{c}$

 $\cos A = \frac{b}{c}$

 $\tan A = \frac{a}{b}$

Pythagorean Theorem $a^2 + b^2 = c^2$

Given:

Equations of a Line

Standard Form Ax + By = C

Slope-Intercept Form y = mx + b

Point-Slope Form $y - y_1 = m(x - x_1)$ A, B, and C are constants with A and B not both equal to zero.

 (x_1,y_1) and (x_2,y_2) are 2 points.

 (x_1,y_1) is a point.

m = slope

b = y-intercept

Coordinate Geometry

 $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope

m = slope

 $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ M = midpointMidpoint d = distance

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Distance

Circles

Equation of a Circle $(x-h)^2 + (y-k)^2 = r^2$ center (h,k)

r = radius $A = \pi r^2$ Area Formula A = area

C = circumferenceCircumference Formula $C = \pi d = 2\pi r$

d = diameter $A = \frac{\theta}{360} \pi r^2$ Area of a Sector with Central Angle θ $\pi \approx 3.14$

Key to Symbols

∆ABC triangle ABC

∠ABC..... angle ABC

 $m\angle ABC$ the degree measure of angle ABC

AB line *AB*

AB line segment AB

AB the length of line segment AB

Circle O circle with center point O

AB arc *AB*

 \perp is perpendicular to

..... is parallel to

≅ is congruent to

~ is similar to

≈ is approximately equal to