Section 1-4: Day 2

Building Functions from Functions

- Students will be able to combine functions algebraically
- Students will be able to find and use composites of functions
- Students will be able to use relations and implicitly defined functions

Decomposing Functions

For each function h, find functions f and g such that h(x) = f(g(x)).

$$h(x) = (x + 1)^2 - 3(x + 1) + 4.$$

$$g(x) = \frac{x+1}{2}$$

$$f(x) = \frac{x^2-3x+4}{2}$$

$$h(x) = \sqrt{x^3 + 1} \qquad g(x) = \chi^3 \qquad \text{of} \qquad \qquad f(x) = \sqrt{x+1}$$

$$g(x) = x^3 + 1$$

 $f(x) = \sqrt{x}$

Find f(x) and g(x) so that the function can be described as y = f(g(x))

$$y = |3x - 2|$$

$$g(x) = 3x - 2$$

$$f(x) = |x|$$

Modeling with Function Composition

In the medical procedure known as angioplasty, doctors insert a catheter into a heart vein (through a large peripheral vein) and inflate a small spherical balloon on the tip of a catheter.

Suppose the balloon is inflated at a constant rate of 44 cubic

millimeters per second.

Find the volume after t seconds. $\sqrt{-14}$

When the volume is V, what is the radius r? $V_{SPAEAE} = \frac{1}{3} \pi \Gamma^3$

Write an equation that gives the radius *r* as a function of the time. What is the radius after 5 seconds.

A high-altitude spherical weather balloon expands as it rises due to the drop in atmospheric pressure. Suppose that the radius increases at the rate of 0.03 inch per second and that r = 48 inches at the time t = 0. Determine an equation that models the volume V of the balloon at time t and find the volume when t = 300 seconds.

Verifying Pairs in a Relation Determine which of the ordered pairs (2, -5), (1, 3), and (2, 1) are in the relation defined by $x^2y + y^2 = 5$. Is the relation a function? Relation - Set of ordered pairs (x, -5), and (x, -1), an

Which of the following ordered pairs (1, 1), (4, -2) and (3, -1) are in the relation given by 3x + 4y = 5?

$$(1,1) \quad 3(1) + 4(1) = 5$$

$$3 + 4 = 5$$

$$7 \neq 5$$

$$(4,-2) \quad 3(4) + 4(-2) = 5$$

$$12 - 8 = 5$$

$$4 \neq 5$$

$$(3,-1) \quad 3(3) + 4(-1) = 5$$

$$9 - 4 = 5$$

$$5 = 5$$

$$x^{2} + y^{2} = 4$$
 $y^{2} = 4 - x^{2}$
 $y^{2} = 4 - x^{2}$
 $y = \frac{1}{4} - x^{2}$
 $y = -4 - x^{2}$
 $y = -4 - x^{2}$

Using Implicitly Defined Functions

Describe the graph of the relation $x^2 + 2xy + y^2 = 1$.

$$(x+y)(x+y) = 1$$

 $(x+y)^2 = 1$
 $x+y=\pm 1$
 $x+y=1$
 $y=-x+1$
 $y=-x+1$
 $y=-x+1$
 $y=-x+1$
 $y=-x+1$

Find two functions defined implicitly by the given relation.

$$x^{2} + y^{2} = 25$$

$$y^{2} = 25 - x^{2}$$

$$y = \pm \sqrt{25 - x^{2}}$$

