Section 1-2: Day 2

Functions & Their Properties

- Students will be able to represent functions numerically, algebraically and graphically
- Students will be able to determine the domain and range for the function
- Students will be able to analyze the function's characteristics such as extreme values, symmetry, asymptotes & end behavior

Identifying Points of Discontinuity

Judging from the graphs, which of the following figures shows functions that are discontinuous at x = 2? Are any of the discontinuities removable?

FIGURE 1.16 • $f(x) = \frac{x+3}{x-2}$

N,N

FIGURE 1.17 g(x) = (x + 3)(x - 2)

E 1.17
$$g(x) = (x + 3)(x - 2)$$

$$h(x) = \frac{x^2 - 4}{x - 2} = \frac{(x + 2)(x + 2)}{x - 2}$$
FIGURE 1.18 $h(x) = \frac{x^2 - 4}{x - 2}$

cancels out hole in graph

#21

21. Graph the function and tell whether or not it has a point of discontinuity at x = 0. If there is a discontinuity, tell whether it is removable or nonremovable.

$$g(x) = \frac{3}{x}$$

discontinuous

nonremountle linfinite (asymptote):

DEFINITION Increasing, Decreasing, and Constant Function on an Interval

A function f is **increasing** on an interval if, for any two points in the interval, a positive change in x results in a positive change in f(x).

A function f is **decreasing** on an interval if, for any two points in the interval, a positive change in x results in a negative change in f(x).

A function f is **constant** on an interval if, for any two points in the interval, a positive change in x results in a zero change in f(x).

45 x sets larger y stays the same

Analyzing a Function for Increasing-Decreasing Behavior

For each function, tell the intervals on which it is increasing and the intervals on which it is decreasing.

$$f(x) = (x+2)^2$$

$$g(x) = \frac{x^2}{x^2 - 1}$$

#33

33. Graph the function and identify intervals on which the function is increasing, decreasing or constant.

$$g(x) = 3 - (x - 1)^2$$

DEFINITION Lower Bound, Upper Bound, and Bounded

A function f is **bounded below** if there is some number b that is less than or equal to every number in the range of f. Any such number b is called a **lower bound** of f.

A function f is **bounded above** if there is some number B that is greater than or equal to every number in the range of f. Any such number B is called an **upper bound** of f.

upper bound of f.A function f is bounded if it is bounded both above and below.

bounded above

Bounded

Not bounded above Bounded below

Checking Boundedness

Identify each of these functions as bounded below, bounded above or bounded.

$$w(x) = 3x^2 - 4$$

lower bound

#33

37. Determine whether the function is bounded above, bounded below or bounded.

DEFINITION Local and Absolute Extrema

A **local maximum** of a function f is a value f(c) that is greater than or equal to all range values of f on some open interval containing c. If f(c) is greater than or equal to all range values of f, then f(c) is the **maximum** (or **absolute maximum**) value of f.

A **local minimum** of a function f is a value f(c) that is less than or equal to all range values of f on some open interval containing c. If f(c) is less than or equal to all range values of f, then f(c) is the **minimum** (or **absolute minimum**) value of f.

Local extrema are also called relative extrema.

Identifying Local Extrema

Decide whether $f(x) = x^4 - 7x^2 + 6x$ has any local maxima or local minima. If so, find each local maximum value or minimum value and the value of x at which each occurs.

Local Max
$$y = 1.32 @ x = .46$$

Local Min $y = -1.77 @ x = 1.60$
Local Min $y = -24.06 @ x = -2.06$ (46,132
Abs

#41

41. Use a grapher to find all local maxima and minima and the values of x where they occur. Give values rounded to two decimal places.

Symmetryvrtemme

with respect to the y-axis

Symmetry with respect to the y-axis

Example: $f(x) = x^2$

Graphically

Algebraically

For all x in the domain of f,

$$f(-x) = f(x).$$

Functions with this property (for example, x^n , n even) are even functions.

N I	[l
Numeri	call	ly

х	f(x)
-3	9
-2	4
-1	1
1	1
2	4
3	9

ymmetry with respect to the x-axis

Symmetry with respect to the x-axis

Example: $x = y^2$

Algebraically

Graphs with this kind of symmetry are not functions (except the zero function), but we can say that (x, -y) is on the graph whenever (x, y) is on the graph.

Numerico	ılly

х	У
9	-3
4	-2
1	-1
1	1
4 9	2
9	3

Symmetry with respect to the origin

Symmetry

Symmetry with respect to the origin $\int (-x) = -\int (x)$

Example:
$$f(x) = x^3$$

$$\frac{1}{2}(-x) = -\frac{1}{2}(x)$$

$$\int_{0}^{\infty} (-\chi^3) = -\chi^3$$

Graphically

Algebraically

For all x in the domain of f,

$$f(-x) = -f(x).$$

Functions with this property (for example, x^n , n odd) are **odd** functions.

Numerical	lν
Nomerica	ıу

		_
x	у	
-3	-27	
-2	-8	
-1	-1	
1	1	
2	8	
3	27	

Checking Functions for Symmetry

Tell whether each of the following functions is odd, even or neither.

$$f(x) = x^2 - 3$$

EVEN

g(x) = g(-x)

 $g(x) \neq g(-x)$

$$x^2 - 3 = x^2 - 3$$

$$g(x) = x^2 - 2x - 2$$

$$g(x) = (-x)^{x} - 2(-x)^{-2}$$
 $= x^{2} + 3x \cdot 2$
NEITHER

$$x^3$$

$$h(x) = \frac{x^3}{4 - x^2} \qquad h(x) = \frac{(-x)^3}{4 - (-x)^2} = \frac{-x^3}{4 - x^2} \quad \text{OPO}$$

$$h(-x) = -h(x)$$
 $-\frac{x}{x}$

49. State whether the function is odd, even or neither.

$$f(x) = \sqrt{x^2 + 2}$$

DEFINITION Horizontal and Vertical Asymptotes

The line y = b is a **horizontal asymptote** of the graph of a function y = f(x)if f(x) approaches a limit of b as x approaches $+\infty$ or $-\infty$.

In limit notation:

$$\lim_{x \to -\infty} f(x) = b \quad \text{or} \quad \lim_{x \to +\infty} f(x) = b$$

The line x = a is a vertical asymptote of the graph of a function y = f(x) if f(x) approaches a limit of $+\infty$ or $-\infty$ as x approaches a from either direction.

In limit notation:

$$\lim_{x \to a^{-}} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^{+}} f(x) = \pm \infty$$

$$\begin{array}{l} |x + x| = -\lambda \\ |x - x| = -\lambda \\ |x - x| = -\lambda \\ |x - x| = -\lambda \end{array}$$

Identifying the Asymptotes of a Graph

Identify any horizontal or vertical asymptotes of the graph of

$$y = \frac{x}{x^2 - x - 2}$$

$$f(-x) = -f(x)$$

$$= \frac{-x}{(-x)^2 - (-x)^{-2}} \quad 000$$

$$= \frac{-x}{x^2 + x^{-2}}$$

#57

57. Use a method of your choice to find all horizontal and vertical asymptotes of the function.

$$f(x) = \frac{x+2}{3-x} \quad \text{vert} \quad x=3$$
hor:2 $y=1$

End Behavior

 how the function behaves as it goes off toward either "end" of the graph

B
$$y = \frac{3x^2}{x^2 + 1}$$

C
$$y = \frac{3x^3}{x^2 + 1}$$

#65

65. Which function matches the given equation?

$$y = \frac{x+2}{2x^2+1}$$

HW:	Pg 95 #'s	48-72 by	[,] 3's, 81	and 84		