2.7 Prove Angle Pair Relationships

Goal: Use properties of special pairs of angles.

Congruent Supplements Theorem - 180°

If 2 angles are supplementary to the same angle, then they are congruent

If $\angle 1$ and $\angle 2$ are supplementary and $\angle 3$ and $\angle 2$ are supplementary, then $\angle 1 \cong \angle 3$.

Congruent Complements Theorem -

90

If 2 angles are complementary to the same angle, then they are congruent

If $\angle 4$ and $\angle 5$ are complementary and $\angle 6$ and $\angle 5$ are complementary, then $\angle 4 \cong \angle 6$.

Linear Pair Postulate

180°

If 2 angles form a linear pair, then they are supplementary.

 $\angle 1$ and $\angle 2$ form a linear pair, so $\angle 1$ and $\angle 2$ are supplementary and $m\angle 1+m\angle 2=180^{\circ}$.

Vertical Angles Theorem (VAT) -

vertical angles are congruent

If
$$<1 = 75^{\circ}$$
, find $<2,<3,$ and <4 .

180

105

105

If $m \angle 1 = 112^{\circ}$, find $m \angle 2$, $m \angle 3$, and $m \angle 4$.

Right Angles Congruence Theorem

All right angles are congruent.

PROOF

GIVEN \triangleright $\angle 1$ and $\angle 2$ are right angles.

PROVE \triangleright $\angle 1 \cong \angle 2$

Which equation can be used to find x?

(A)
$$32 + (3x + 1) = 90$$

$$\mathbf{B} 32 + (3x+1) = 180$$

©
$$32 = 3x + 1$$

(D)
$$3x + 1 = 212$$

Solve for *x*.

Find $m \angle TPS$.

HW: PG 119 #'s 2,	, 8-30		