
Polygon -

a closed plane figure that is formed by 3 or more segments (called sides) where each side intersects exactly 2 sides, one at each endpoint.

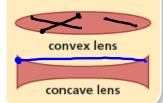
(each endpoint is called a vertex)

sides - segments AB BC ED

 $\underline{\text{vertices}}$ - endpoints (where segment meet) E, B, F

10 name - label vertices in order ABCDEF, FEDCBA,
A POLYGON
DEFABC

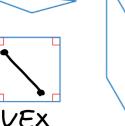
diagonals - segment connecting nonadjacent vertices

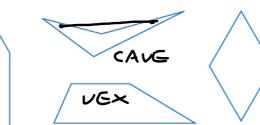

FB FC FD not next to CF CE CA

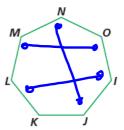
Convex - segments formed by connecting any 2 points within a polygon stay within the polygon

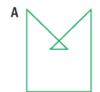
Concave - a polygon that is not convex

CONCAVE } here has


The word *convex* has the same meaning when it describes lenses. Lenses that are not convex are called *concave*.




Six figures are drawn below. All of the figures share certain characteristics. They all have straight sides, and each one encloses a region. These are characteristics of polygons. Polygons are not limited to three or four sides. At the right are two different seven-sided polygons, called heptagons.

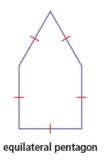




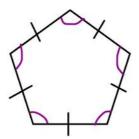
label as convex or concave (nonconvex)

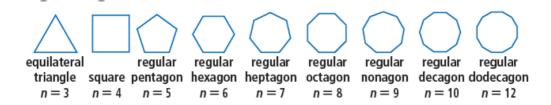
label as convex or concave (nonconvex)

Which figures below do you think appear to be polygons? Why?



Names of Po	ygons
# of sides	<u>name</u>
1	-
2	-
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
12	Dodecagon
n	n-gon N=# of sides
20	20 - gon


Equilateral Polygons - all sides of a polygon are congruent (same length)



Equiangular Polygons- <u>all interior angles</u> of a polygon are congruent (same measure)

equiangular hexagon

Regular Polygon - a convex polygon that is equilateral and equiangular

HW: Pg 44 #'s 3-31, 39, 41