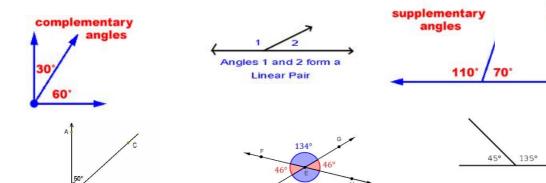
These

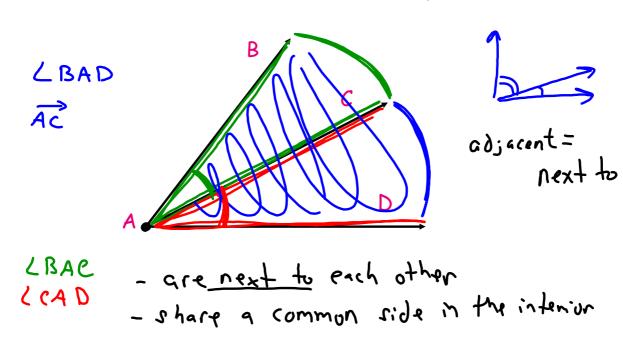
to 180°

1.5 Describe Angle Pair Relationships

Goal: Use special angle relationships to find angle measures.



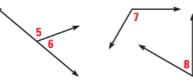
<u>adjacent angles</u> - 2 angles that share a common vertex and side, but have no common interior points



Complementary angles

Supplementary Angles - two angles whose sum is 180 (supplements)

Supplementary angles



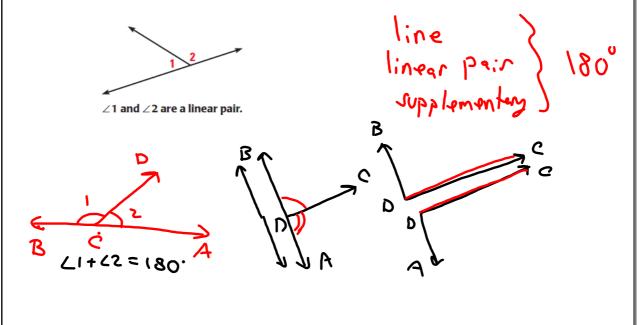
Adjacent

Find measures of a complement and a supplement

- **a.** Given that $\angle 1$ is a complement of $\angle 2$ and $m\angle 1=68^\circ$, find $m\angle 2$.
- **b.** Given that $\angle 3$ is a supplement of $\angle 4$ and $m\angle 4 = 56^{\circ}$, find $m\angle 3$.

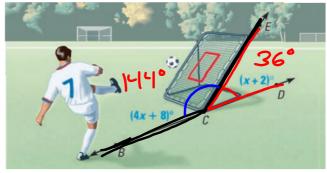
Linear Pairs - two adjacent angles whose noncommon sides are opposite rays (they will be supplementary)

if two angles are linear pairs, then they are supplementary



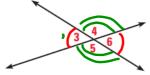
Find angle measures

SPORTS When viewed from the side, the frame of a ball-return net forms a pair of supplementary angles with the ground. Find $m \angle BCE$ and $m \angle ECD$.

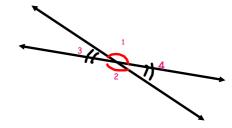


Vertical Angles - two angles where their sides form 2 pairs of opposite rays

* if two angles are vertical angles, then their measurements are equal

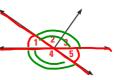


 \angle 3 and \angle 6 are vertical angles. \angle 4 and \angle 5 are vertical angles.



Identify angle pairs

Identify all of the linear pairs and all of the vertical angles in the figure at the right.



Find angle measures in a linear pair

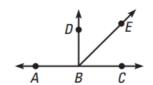
WALGEBRA Two angles form a linear pair. The measure of one angle is 5 times the measure of the other. Find the measure of each angle.

The measure of an angle is twice the measure of its complement. Find the measure of each angle.

$$L1+L2=90^{\circ}$$
 $2x=60$
 $3x=90$
 $1=30$

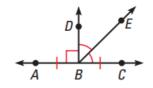
Interpreting a Diagram

There are some things you can conclude from a diagram, and some you cannot. For example, here are some things that you *can* conclude from the diagram at the right:



- · All points shown are coplanar.
- Points A, B, and C are collinear, and B is between A and C.
- \overrightarrow{AC} , \overrightarrow{BD} , and \overrightarrow{BE} intersect at point B.
- $\angle DBE$ and $\angle EBC$ are adjacent angles, and $\angle ABC$ is a straight angle.
- Point E lies in the interior of $\angle DBC$.

In the diagram above, you **cannot conclude** that $\overline{AB} \cong \overline{BC}$, that $\angle DBE \cong \angle EBC$, or that $\angle ABD$ is a right angle. This information must be indicated, as shown at the right.



HW: Pg 38 #'s 1-44	