
- 1. The hexagon below is surrounded by 12 dots.
 - a. How many hexagons will be in the 5th figure of the pattern?
 - b. Which figure of the pattern will have 28 hexagons?

2. Write the next three numbers in the pattern.

10, 15, 21, 28, ______, ____, _____,

3. Fill in the missing numbers in the pattern.

2, 4, _____, 16, 32 , _____

4. Find a counterexample to disprove the conjecture;

The value of x^3 is always greater than the value of x.

5. Find the counterexample to disprove the conjecture.

Regular polygons always have a even number of sides.

6. Find the counterexample to disprove the conjecture.

If x > 5, then x > 10.

7. Rewrite the statements as a biconditional.

If Chris is elected class president, then he has the most votes.

If Chris has the most votes, then he will be elected class president.

8. Which statement is the reflexive property, symmetric property, or transitive property.

If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.

 $\angle P \cong \angle P$ _____

If $\angle 6 \cong \angle 7$ and $\angle 7 \cong \angle 8$, then $\angle 6 \cong \angle 8$.

9. Solve the equation and write a reason for each step.

6(x+4) = 60

given

._____

10.				
	GIVEN:	$\angle 1$	\cong	∠3

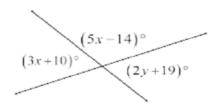
1 3 4

PROVE: $\angle 1 \cong \angle 4$

Statements Reasons

1.1	If v =	~	4h	2	4	10
	11 Y =	- 1	men	-/x +	- 4 =	111

inverse:


contrapositve:

12. Solve the following equations for y.

a.)
$$-4x + 2y = 16$$
 b.) $4y + 12x = 40$

b.)
$$4y + 12x = 40$$

13. Find the values of x and y. (circle answers)

14. If $\angle A$ and $\angle B$ are vertical angles, and $\angle A = 7x + 3$ and $\angle B = 80^{\circ}$. Find x.

15. If a polygon is equilateral, then it has all congruent sides.

converse:

inverse:

contrapositve:

16.

GIVEN: $\overline{PQ} \cong \overline{RS}$, R is the midpoint of \overline{SQ}

PROVE: $\overline{PQ} \cong \overline{QR}$

Statements	Reasons

17. Write the following statement as a conditional: Every rectangle has four right angles..

18. Make a valid conclusion given the two statements (if possible).

- a.) If you order apple pie, then it will be served with ice cream. Joe ordered apple pie.
- b.) If you eat to much turkey, then you will get sick. Abby got sick.

c.) If angle 2 is acute, then angle 3 is obtuse. If angle 3 is obtuse, then angle 4 is acute.

	19.	True/False
		a.) Through any 3 points there is exactly one line
		b.) The intersection of two planes is a line
		c.) Two lines can intersect in more than one point.
L		
Г		