SUMMARY Q-STATEMENTS:

1) Adding a metal (solid) to water and it does not dissolve:

2) Adding a solid to water and it dissolves:

$$q_{solid} + q_{solution} = 0$$
 Solve for q_{solid}
$$q_{solid} + (q_{solution} + q_{cal}) = 0$$

3) Mixing two solutions causing a chemical reaction:

4) Mixing hot and cold water:

$$q_{hot} + (q_{cold} + q_{cal}) = 0$$
 Solve for q_{cal}

5) Combustion:(bomb calorimeter)

$$q_{comb}$$
 + q_{cal} = 0

Solve for q_{comb} usually in kJ/mol

$$q_{comb}$$
 + $(q_{cal}$ + q_{water}) = 0

6) Energy diagram calculations: specific heat or phase change

Potential Energy vs Reaction Coordinate:

Energy of Phase change diagram

STOICHIOMETRY OF THERMOCHEMICAL EQUATIONS:

1) The heat of reaction of a forward reaction is identical in magnitude but opposite in sign of the heat of reaction of the reverse reaction.

$$S(s) + O_2(g)$$
 --> $SO_2(g)$ $\Delta_H = -296.8 \text{ kJ}$
 $SO_2(g)$ --> $S(s)$ + $O_2(g)$ $\Delta_H = +296.8 \text{ kJ}$

2) The enthalpy of a reaction can be treated as a reactant (if endothermic) or as a product (if exothermic)

$$S(s) + O_2(g) --> SO_2(g) + 296.8 \text{ kJ}$$

296.8 kJ + $SO_2(g) --> S(s) + O_2(g)$

3) The major source of aluminum in the world is bauxite (mostly aluminum oxide). Its thermal decomposition can be represented by $2Al_2O_3(s) --> 4Al(s) + 3O_2$ $\Delta H_{rxn} = 3252kJ$

If aluminum were produced this way, how many grams of aluminum could be formed when 1000.kJ of heat was utilized?

THERMODYNAMICS:

- 1) Energy: the capacity to do work
- 2) Kinetic Energy: energy associated with motion ex: thermal, mechanical, electrical, sound
- 3) Potential Energy: energy that results from an object's position ex. chemical, nuclear, gravitational
- 4) 3 Laws of Thermodynamics:
 - A) 1st: The Law of Conservation of Energy
 - B) 2nd: In a spontaneous process, the entropy of the universe increases
 - C) 3rd: There is no disorder in a perfect crystal at 0 K.
- 5) Heat vs temperature
 - a) the more thermal energy a substance has, the greater the motion of its atoms or molecules
 - b) temperature measures the hotness or coldness of a substance.
- 6) System: the object, or collection of objects, being studied Surroundings: everything outside the system that can exchange energy with the system

7) Endothermic: heat is transferred from the surroundings to the system

Exothermic: heat is transferred from the system to the surroundings

Determine which are endothermic and which are exothermic:

- A) water evaporating
- B) striking a match
- C) boiling water
- D) water freezing
- E) solution getting colder when NH₄NO₃ is dissolved
- F) steam condensing
- G) solution getting hotter when NaOH is dissolved
- H) a lit bunsen burner
- I) 2 solutions are mixed and a gas is produced and the temperature of the mixture increases

- 8) Heat Capacity: the amount of heat it takes for a substance to change 1°C (1K)
 - Specific Heat Capacity: amount of heat required to raise the temperature of one gram of substance 1 °C (1K)
 - Molar Heat Capacity: quantity of heat required to raise the temperature of 1 mole of substance 1 °C (1K)

11/1/13 homework:

Determine which is endothermic and which is exothermic:

- 1) boiling alcohol
- 2) water going from 20°C to 10°C
- 3) adding ammonium chloride to water and the temperature goes from 20C to 10°C
- 4) adding HCl to NaOH and the temperature goes from 10°C to 25°C
- 5) acetone evaporating
- 6) melting iron
- 7) water going from 55°C to 75°C
- 8) steam condensing
- 9) ethanol freezing
- 10) adding barium hydroxide to ammonium thiocyanate and the temperature goes from 25°C to 0°C
- 11) a piece of aluminum goes from 79°C to 35°C.

Example 1: A 5.00-g sample of a substance was heated from 25.2 °C to 55.1 °C, requiring 133 J to do so. Calculate its specific heat.

Calculate the amount of heat released when 50.0-g of water at 60.0°C is cooled to 20.0°C.

Calculate the specific heat constant of a substance if 5.00-g of it at 55.1°C releases 133J of heat when cooled to 25.2°C

CALORIMETRY:

- the science of measuring heat
- based on observing the temperature change when a body absorbs or discharges energy as heat

Coffee-cup Calorimeter: constant pressure calorimetry

- ex. a) add a heat solid (metal) to water
 - b) dissolving a solid compound into water
 - c) mix 2 solutions and a chemical reaction occurs

(There may be a correction for the calorimeter or not)

CALORIMETRY:

1) 15.0-g of sodium hydroxide is added to 150-g of water at 23.56°C. The temperature increased to 26.75°C. What is the molar heat of solution? Assume that the specific heat and the density of the solution is that of water.

2) A student wishes to determine the heat capacity of a coffee-cup calorimeter. After she mixes 100.0-g of water at 58.5 °C with 100.0-g of water, already in the calorimeter, at 22.8 °C, the final temperature of the water is 39.7 °C. Find the heat capacity of the calorimeter.

3) When we add 30.00-mL of 0.500M NaOH at 21.40 $^{\circ}$ C to 30.00-mL of 0.500M HC₂H₃O₂ already in the calorimeter at the same temperature, the resulting temperature is observed to be 24.35 $^{\circ}$ C. The heat capacity of the calorimeter has previously been determined to be 27.8 J/ $^{\circ}$ C. Assume that the specific heat of the mixture is the same as that of water and that the density of the mixture is 1.02 g/mL. Calculate the molar heat of reaction.

4) When 0.500-L of 1.00M Ba(NO₃)₂ solution at 25.0°C is mixed with 0.300-L of 1.00M Na₂SO₄ solution at 25.0°C in a calorimeter, solid white BaSO₄ forms and the temperature of the mixture increases to 28.1°C. Neglecting any heat that the calorimeter absorbs, the C_p of the solution at 4.18 J/(g*K), and the density of the solution is 1.00 g/mL, calculate the enthalpy change per mol of BaSO₄.

BOMB CALORIMETER - constant volume - may or may not contain water

1) A 2.20-g sample of quinone, $C_6H_4O_2$, is burned in a bomb calorimeter whose total heat capacity is 7.854 kJ/°C. The temperature of the calorimeter increases from 23.44°C to 30.57°C. What is the heat of combustion per gram of quinone? Per mole of quinone?

2) In a bomb calorimeter compartment surrounded by 945-g of water, the combustion of 1.048-g of benzene, C₆H₆, raises the temperature of the water from 23.640°C to 32.692°C. The heat capacity of the calorimeter is 891 J/°C. Calculate the molar heat of combustion of benzene.

Ch	6 SR	additional	SR notes	notehook
OII	U JD	auullionai	OD HOLES	.IIULEDUUK

October 20, 2014

ENERGY DIAGRAM:

Values for water:
$$C_{p(ice)}=2.03~J/(g*K)$$

$$C_{p(liquid)}=4.18~J/(g*K)$$

$$C_{p(steam)}=2.06~J/(g*K)$$

$$\Delta H_{fus}=6.02~kJ/mol~or~333~J/g$$

 $\Delta H_{vap} = 40.7 \text{ kJ/mol or } 2256 \text{ J/g}$

<u>EX. 1:</u>

How much energy does it take to convert 0.500-kg ice at - 20.0°C to steam at 250.°C?

EX. 2: Calculate the amount of heat needed to change 50.0-g of ice at 0°C to 95.0°C.

EX. 3:

Consider a 75.0-g sample of steam at 125 °C. What phase or phases are present when 215-kJ of energy is removed from the sample?

EX. 4:

A substance, X, has the following properties:

$\Delta H_{\text{vap}} = 20.0 \text{ kJ/mol}$	$C(s) = 3.00 \text{ J/}(g *_{\circ} C)$
$\Delta H_{\text{fus}} = 5.00 \text{ kJ/mol}$	$C(1) = 2.50 \text{ J/(g* } \circ \text{C)}$
$mpt = -15.0 \circ C$	$C(g) = 1.00 \text{ J/}(g *_{0}C)$
bpt = 75.0 °C	

Calculate the energy that must be removed to convert 250.g of substance X from 100. °C to -50.0 °C. Assume X has a molar mass of 75.0 g/mol.

EX. 5:

11.0-g of ice at 0°C is added to 50.0-ml H ₂O at 29.0°C. After the ice melts, the temperature of the water is 9.7°C. Calculate the heat of fusion of ice.

EX. 6:

If 3 ice cubes at 35.0-g each and -10.0 °C are added to glass of 300.-mL of water at 68.0 °C, what will be the final temperature of the water?

4) From the following enthalpies of reaction,

$$4HCl(g) + O_2(g) --> 2H_2O(l) + 2Cl_2(g) \Delta H = -202.4 \text{ kJ}$$

$$1/2H_2(g) + 1/2F_2(g) --> HF(l) \Delta H = -600.\text{kJ}$$

$$H_2(g) + 1/2O_2(g) --> H_2O(l) \Delta H = -285.8 \text{ kJ}$$
 find the ΔH_{rxn} for $2HCl(g) + F_2(g) --> 2HF(l) + Cl_2(g)$

5) Determine the molar heat of formation of liquid hydrogen peroxide at 25°C from the following thermochemical equations:

$$H_2(g) + 1/2O_2(g) \longrightarrow H_2O(g)$$
 $\Delta H = -241.82 \text{ kJ}$
 $2H(g) + O(g) \longrightarrow H_2O(g)$ $\Delta H = -926.92 \text{ kJ}$
 $2H(g) + 2O(g) \longrightarrow H_2O_2(g)$ $\Delta H = -1070.60 \text{ kJ}$
 $2O(g) \longrightarrow O_2(g)$ $\Delta H = -498.34 \text{ kJ}$
 $\Delta H_2O_2(l) \longrightarrow H_2O_2(g)$ $\Delta H = 51.46 \text{ kJ}$

6) If the heat of combustion for cyclohexane, C_6H_{12} , is -3920 kJ/mol, what is the standard heat of formation of cyclohexane? ($H_2O(l)$ is produced)