Ch 4: Alkenes

- Naming - Structure - Reactivity

Some alkenes in nature:

- 1.) **Ethylene -** hormone in plants responsible for seed germination and fruit ripening
 - A) How do stores get fruit to ripen on arrival?
 - B) Why do your bananas ripen faster when placed next to spotty bananas?
- 2.) Pheromones produced by plants and animals used to communicate
 - Sex (attraction)
- Alarm
- Trail
- A) Detection of pheromones is done through smell (bugs use antennae)

 http://www.youtube.com/watch?v=gcHt5n3NGK0
- B) Use of artificial (man made) pheromones to attract and trap insects

Alkenes (Structure):

Formula - C_nH_{2n} (straight chain)

Saturation vs Unsaturation:

Saturated - has max amount of H possible (alkanes)

Unsaturated - fewer than the max amount of H (alkenes, cyclic alkanes, and alkynes)

Formula for unsaturation level ID:

Compare the hydrogen count to an alkane formula for the C # (C_nH_{2n+2})

- For every 2 H less than for the alkane, it has 1 Pi bond

REMEMBER: A) = bond (1 pi bond)

B) ≡ bond (2 pi bonds)

C) a cyclic structure reduces by -2 H

EX: C₁₀H₁₆

Naming alkenes: ** ALWAYS replace -ane with -ene

1) Find the longest chain containing the functional group (C=C)it may not be the longest carbon chain

2) You must number through the double bond (# so the = is lowest number possible)

3) If there are two double bonds the ending is *-diene*

4) The functional (=) group gets the lowest number, not the substituent

5) The substituents are listed in alphabetical order like alkanes

6) If there is only one double bond in a cyclic structure, a number is

not needed (the = bond will always t

carbon)

Summary for naming any functional group:

- substituents in alphabetical order
- functional group gets lowest #
- parent hydrocarbon chain = base word

substituent - parent hydrocarbon - functional group suffix
Number if needed

Types of carbons in an alkene:

vinylic carbons: sp² carbons of the alkene

allylic carbons: sp3 carbons attached adjacent to the vinylic carbon

Vinyl group: smallest possible group containing C=C

Allyl group: smallest possible group adjacent to allylic carbon

EXAMPLE: Name these by systematic name and common name

$$Br - CH_2 - CH = CH_2$$

Structure:

cyclohexene

2,3-dimethyl-2-butene

- Write the structural or skeletal formula for:
 a) vinylcyclopentane

 - b) allylcyclopropane

Geomtry of alkenes:

- **All orbitals in the same plane
- ** C=C bond prevents rotation (try it)

Degree of Unsaturation:

1) Organohalogen compounds (C,H,X where X = F,Cl,Br, or I)

 a halogen acts simply as a replacement for hydrogen in an organic compound, so we add the number of halogens and hydrogens to arrive at the equivalent hydrocarbon formula

$$C_4H_6Br_2 = C_4H_8$$

Organooxygen compounds (C,H,O)

 oxygen forms 2 bonds, so it does not affect the formula of the equivalent hydrocarbon and can be ignored when calculating the degree of unsaturation.

$$C_5H_8O = C_5H_8$$

Organonitrogen Compounds:

 nitrogen forms 3 bonds, so an organonitrogen compound has one more hydrogen than a relate hydrocarbon; therefore we subtract the number of nitrogens from the number of hydrogens to arrive at the equivalent hydrocarbon formula.

$$C_5H_9N = C_5H_8$$

To summarize saturation of O, N, Halogen compounds:

- add the number of halogens to the number of hydrogens
- ignore the number of oxygens
- subtract the number of nitrogens from the number of hydrogens

Calculate the degree of unsaturation for each:

- 1) C₄H₈
- 2) C₄H₆
- 3) C₃H₄
- 4) C_6H_5N
- 5) C₆H₅NO₂
- 6) C₈H₉Cl₃
- 7) C₉H₁₆Br₂
- 8) $C_{10}H_{12}N_2O_3$
- 9) C₂₀H₃₂CIN

Geometric Isomers (Cis and Trans):

cis - main branches/substituents on same side trans - main branches/substituents on opposite sides

ex. 2-pentene (draw the cis and trans)

ex. cis-2-butene vs trans-2-butene

The E, Z Designation:

cis/trans: works only with disubstituted alkenes (If substituents are different, it doesn't work)

E: entgegen - opposite

Z: zuzammen - together ("ze zame zide")

Cahn-Ingold-Prelog Rules:

1) Considering the double bond carbons separately, look at the atoms directly attached to each carbon and rank them according to atomic number.

ex. 2-chloro-2-butene

2) If a decision can't be reached by ranking the first atoms in the substituents, look at the second, third, or fourth atoms away from the double-bond carbons until the first difference is found.

ex. 2-chloro -3-methylpent-2-en-1-ol

3) Multiple-bonded atoms are equivalent to the same number of single-bonded atoms. For example, an aldehyde substitute (-CH=O), which has a carbon atom *doubly* bonded to *one* oxygen, is equivalent to a substitute having a carbon **singly** bonded to *two* oxygens.

A) Draw the structure of (E)-3-methyl-1,3-pentadiene

B) Draw the structure of (E)-1-bromo-2-methyl-2-butene

C) Draw the structure of (Z)-1,2-dibromo-3-isopropyl-2-hexene

Stability of Alkenes:

1) Stabilizing interaction between the C=C pi bond and adjacent C-H sigma bonds on substituents. The interaction is called hyperconjugation

What this means: alkyl substituents on alkene C=C causes stability and THE MORE SUBSTITUENTS = MORE STABILITY

2) A bond between an**s** p^2 carbon and an**s** p^3 carbon is somewhat stronger than a bond between two**s** p^3 carbons

Ex: Cis-2-butene vs trans-2-butene (Draw and then ID who is more stable)

Why do you think increased substitution = more stability?

Reacting alkenes and use of curved arrows:

<u>functional groups -</u> centers of reactivity in organic chemistry Alkenes = functional group

Forces that make organic reactions occur:

- A) Electron rich atoms/molecules
- B) Electron deficient atoms/molecules

 "Electron rich atoms/molecules are attracted to electron deficient atoms/molecules"

Electrophile - Electron deficient atom/molecule

Nucleophile - Electron rich atom/molecule

Ex:
$$H-\ddot{Q}_1$$
 $\ddot{C}I$ $CH_3\ddot{N}H_2$ $H_2\ddot{Q}$

So... Is an alkene rich or poor for electrons?

- 4.7: How Alkenes React:
 - bond breaking:
 - a) homolytic symmetrical cleavage 1 electron remains with each product (free radical)
 - b) heterolytic unsymmetrical cleavage
 - both électrons remain with 1 product
 - reactions that involve unsymmetrical bond breaking and making are called Polar Reactions
 - Bond formation:

bonds are made when an electron-rich atom shares a pair of electrons with an electron-poor atom

- electron-rich atoms or molecules are attracted to electrondeficient atoms or molecules

-Nucleophiles: - has a negatively polarized, electron-rich atom - can either be neutral or negatively charged

- Electrophiles: - positively polarized, electron-poor atom - can be either neutral or positively charged

* Electrons move from a nucleophilic source to an electrophile

Which of the following species is likely to behave as a nucleophile and which as an electrophile?

- a) NO₂ +
- b) CH₃O c) CH₃OH

Mechanism of a reaction:

- -step by step description of product to reactant change
- use of curved arrows to show what happens
 - Curved arrows = : movement (2e-) from e-rich to e- deficient

Example of how arrows work in a reaction: (2-butene + HBr)

What type of reaction is this

Some more notes about alkene reactions:

A) Alkenes typically undergo electrophilic addition reactions

More notes about Curved arrows: (see blue box pt 98-99)

A) Always move curved arrow from

- B) Never show atom movements with a curved arrow
- C) Curved arrow always points to an atom or new bond, never empty space
- D) Start arrow at electron source

Reaction coordinate diagrams:

Transition states - in between state of 2 rxn steps

- always shown in [] brackets
- shows partially broken/formed bonds
- shows partial +/- charges

Example: 2-butene + HBr

Reaction Coordinate diagram - graphically shows the energy change that takes place through reaction

reactants ---> transition states ---> products

Peak height = energy value

Ex: Drawing the reaction coordinate diagram for 2-butenene + HBr

Graph of whole reaction:

Transition vs intermediate states

Transition - partially - - - - - bonds
Intermediate - fully formed bonds

Concentration of reactant vs product

- Reaction is done when equilibrium is reached
- Relative concentration of reactant to product depends on energy
 - a.) Product energy < reactant energy = products favored
 - b.) Product energy > reactant energy = reactants favored
 - c.) To see the energy comparison, look at graph

Why? Less energy = more stable

<u>Favorable reaction</u> - reaction where Product E < Reactant E and products are formed

Speed of a reaction:

- Speed is determined by the energy barrier (hill) it needs to climb

Free Activation Energy- the energy barrier (hill), indicated by △G

△G[‡]- (Free energy of the transtion state) - (free energy of the reactants)

Rate determining step - in a reaction with 2 or more steps, the step with the highest ΔG

What determines how fast a reaction will go?

- 1) # of collisions that take place in a certain time period
- 2) The fraction of collisions occurring with sufficient energy to overcome energy barrier
- 3) Fraction of collisions with proper orientation (ex: H needs to approach pi bond, not the methyl group)

Rate of reaction = (# of collisions per unit of time) * (fraction with sufficient energy) * (fraction with proper orientation)

How to increase rate of reaction:

- 1) *Increase concentration* of reactants (it increases # of collisions)
- 2) *Increase temp* of reaction (it increases # of collisions and the fraction of collsions with enough energy)
- 3) **Catalyst** (catalyst gives reactants a new pathway to follow, with a lower activation energy)

Catalyst is:

- A) Not consumed or changed
- B) Only a small amount is needed (1-10% of reactants used)
- C) Only effects rate of reaction, amount of product produced is still the same

