# Ch 2 The Atom and Naming of Compounds



## **Dalton's Atomic Theory**

- 5 Parts of Dalton's Theory:
- 1.) Each element = tiny particles (atoms)
- 2.) Atoms of same element are identical
- 3.) Chemical compounds form by bonding of atoms and different ratios = diff. compounds
- 4.) Chemical reactions = breaking of bonds and reorganizing of atoms as new bonds form
- 5.) An atom cannot be sub-divided to smaller parts



What else did Dalton do?

Assigned relative masses to known elements, created 1st table of element organization

## Law of multiple proportions:

- elements combine in whole # ratios
- used to find empirical formulas

Ex.: Compounds A, B, and C all contain Oxygen and Nitrogen. 1.0 g. Oxygen is in each compound, but the mass of Nitrogen varies.

Compound Mass of Nitrogen Present

A 1.750 g B 0.8750 g C 0.4375 g

To Do:

1st - verify that this data follows the law of multiple proportions

Ratio of N in:

A vs B

B vs C

A vs C

2nd - determine the empirical formula of the compounds

### Plum Pudding Model - J.J. Thomson (1899)

Entire atom was positive, with - electrons dispersed

1. throughout



### Gold Foil Experiment - Rutherford (1919)

2. Experiment proved that \_\_\_\_\_ was in

nucleus and not \_\_\_\_\_.



|                       | Atomic Number/M<br><u>nic number</u> = numb               |              |                          |                   |                         |
|-----------------------|-----------------------------------------------------------|--------------|--------------------------|-------------------|-------------------------|
| Mass                  | s number =                                                |              | .+                       | <del></del>       |                         |
| An <u>is</u><br>type. | otope differs in nu                                       | mber of      |                          | from other ato    | oms of the same         |
| ļ                     | In isotopes, chemi<br>but physical prop<br>Give some exam | perties ma   | ay differ.               |                   | ies                     |
| 1.) W                 | /rite atomic notatio                                      | on for a Na  | a, having los            | t 1 electron      |                         |
| 2.) W                 | /rite atomic notatio                                      | on for an "  | isotope" of S            | Sodium, 1 less    | neutron                 |
| 3.)W                  | rite atomic notation                                      | n for an at  | tom of Phos <sub>l</sub> | ohorus who is     | <i>isoelectronic</i> to |
| 4.) W                 | /rite atomic notatio                                      | on for Kryp  | oton - 74                |                   |                         |
|                       | a.) ID # of pro                                           | tons, neu    | trons, electro           | ons in it         |                         |
| 5.) V                 | Vrite the atomic no                                       | otation for  | fluoride.                |                   |                         |
|                       | /rite atomic notation                                     | on for 2 oth | ner elements             | s/ions that are i | soelectronic to         |
| 6.)                   | What common iso Why is it used?                           | -            | n is used to o           | date decaying     | items?                  |

# 2.6 Molecules and lons







Space filling (bubble) model



Structural model

#### Words to know/use:

Molecule Covalent bond Formula unit

lon lonic bond

Cation Exchange electrons

Anion Share electrons

Make a Periodic table outline:



| Now, use colors/codes | to ID the | e following as | we discuss | their c | haracteristics |
|-----------------------|-----------|----------------|------------|---------|----------------|
|                       |           |                |            |         |                |

Groups

Periods

Metals

Non-metals

Alkali Metals

Alkaline Earth Metals

Halogens

**Noble Gases** 

ID typical charges per group - why are they so predictable?

Which groups are very reactive? Which is nonreactive? Why?

Naming of Ionic compounds:

An ionic compound is?

#### Rules:

- 1.) + and charges of cation and anion must balance in formula (What do we use to balance?)
- 2.) Cation goes 1st

+4 = IV

- 3.) Anion receives the -ide ending (in written name)
- 4.) If a transition metal is involved, denote its charge with roman numerals in the written name

- 5.) If polyatomics are involved, you may need parenthesize them in the formula. How do you know when to do this?
- 6.) Ionic compounds contain atoms and IONS, you may need to count them.

Naming ionic compounds practice:

Name these, then count the atoms and ions:

a. CsF

d. Na<sub>2</sub>SO<sub>4</sub>

- b. Al<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub>
- e.  $Fe(NO_3)_3$

c. CuClO<sub>3</sub>

f.  $Ca(C_2H_3O_2)_2$ 

Give the formula for these:

- a. potassium nitride
- b. calcium peroxide
- c. lead (II) chloride
- d. Ammonium nitrate
- e. Copper (II) phosphate

BrO<sub>3</sub>-

| Using/remembering polyatomic ions                                      |
|------------------------------------------------------------------------|
| -ate vsite rule?                                                       |
| hypo- (less O than -ite)                                               |
| per- (more O than -ate)                                                |
| Apply:                                                                 |
| CIO <sub>4</sub> -1                                                    |
| CIO <sub>3</sub> -1                                                    |
| CIO <sub>2</sub> -1                                                    |
| CIO-1                                                                  |
| What to do if I don't know a polyatomic/can't remember it?             |
| - Find a polyatomic I know, whose non-oxygen atom is in the same group |
| IO-                                                                    |
| IO <sub>2</sub> -                                                      |
| IO <sub>3</sub> -                                                      |
| IO <sub>4</sub> -                                                      |
| Let's Practice:                                                        |
| a. sodium selenate                                                     |
| d. potassium bromate                                                   |
|                                                                        |
|                                                                        |
|                                                                        |
| BrO <sub>2</sub> -                                                     |

| ranning molecular compound | Naming | Molecular | compounds |
|----------------------------|--------|-----------|-----------|
|----------------------------|--------|-----------|-----------|

How do I know something is "molecular"?

Rules for naming molecular compounds:

## Practice:

Nitrogen monoxide PCI<sub>5</sub>

Dinitrogen trioxide SO<sub>2</sub>

Sulfur hexafluoride  $P_4O_{10}$ 

## Naming of Acids

Acid- molecule where one or more H<sup>+</sup> ions is attached to an anion, that when dissolved in water produces H3O<sup>+</sup>



| Anion End | Acid    | Example           |
|-----------|---------|-------------------|
| -ide      | hydroic | hydrochloric acid |
| -ite      | -ous    | nitrous acid      |
| -ate      | -ic     | sulfuric acid     |

Try These:  $H_2C_2O_4 \qquad \qquad \text{Permanganic acid} \\ HCIO_4 \qquad \qquad Hydroiodic acid} \\ HCIO_3 \qquad \qquad \text{Sulfurous acid} \\ HCIO_2 \qquad \qquad \text{Phosphoric acid} \\ HCIO \qquad \qquad \text{Acetic acid} \\ HCI \qquad \qquad \text{Chromic acid} \\ \\ HC$