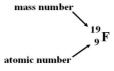

CHAPTER1:DISCUSSION 1:

Carbon = atom found in all living things Bond type of C?

Natural vs Synthetic Compounds:

Same structure?

Benefits of synthetic?


(A) Structure of the Atom:

atomic number:

mass number:

atomic mass:

isotopes:

98.9% 6 protons 6 neutrons

carbon-13 1.1% 6 protons 7 neutrons

carbon-14 <0.1% 6 protons 8 neutrons

(B) Electrons:

electron cloud:

electron configuration:

subshells:

Rules for filling e-: Hunds Rule

Aufbau Principle

Two types of e-: Core Electrons

Valence Electrons

Practice:

Draw the e- configuration of Nitrogen:

ID # core e-

ID # valence e-

Which p orbitals have an e- and how many

Ionic/ Covalent Bonds:

Ionic Bonds:

Example of ionic bond:

Covalent Bonds:

Nonpolar covalent:

Example:

Polar covalent:

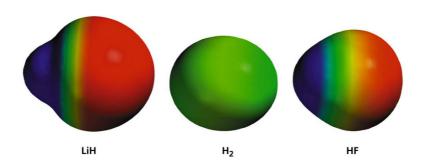
Example:

Practice:

Which bond is more polar? H-F or H-Cl

Use the partial polarity symbol to indicate the direction of the molecules polarity in an NH₃ molecule.

What type of bond does C normally form?


<u>Hydrogen -</u>

form protons H+

or form hydride ions H

Electrostatic Potential Maps:

- to show the distribution of electrons in a molecule
- useful for showing a molecule is polar or nonpolar and can give you insight into the chemical behavior of the molecule
- red: greater electron density (partial negative charge)
- blue: less electron density (partial positive charge)

http://www2.onu.edu/~b-myers/organic/

Lewis Structures:

- Make all atoms happy by sharing e-
- Show Formal charges on atoms

How to find a formal charge:

- 1.) Draw correct lewis structure
- 2.) Focus on each atom at one time

f.c. = # valence - (#lone pair + 1/2 bonded e-)

Ex: Draw Lewis strucure for each and/or find formal charges

 H_2O

 H_3O^+

OH-

 NH_3

 NH_4

When drawing organic structures:

Number of bonds per atom:

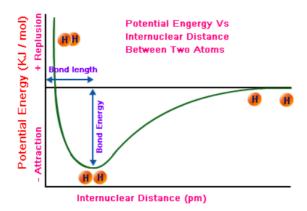
H Oxygen

Halogens Nitrogen

Carbon

Kekule Structures:

- only show bonds and atoms, understand that the lone pairs are present


Condensed Structures:

- only provide order of atoms and subscripts

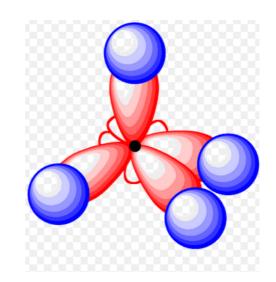
methyl alcohol (Kekulé Structure)

Practice as a class: 12a		
13a		
14a		
17		
What is a constitutional isomer?	r	

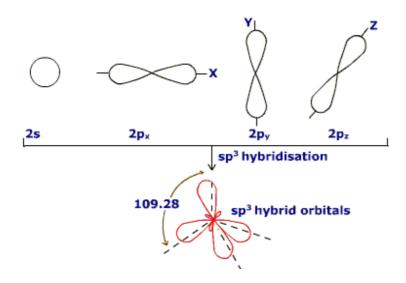
Covalent bond formation

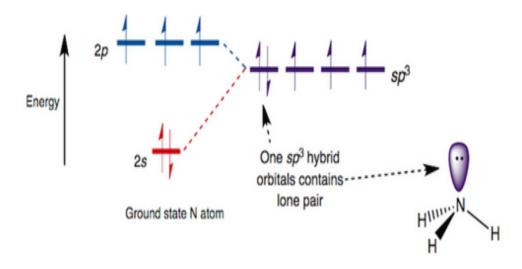
What is happening as atoms bond, according to this graph?

Formation of bonds (hybridization) Single bonds:


ex: Methane CH4

Draw valence orbitals of C?
How many bonds does it need to form?

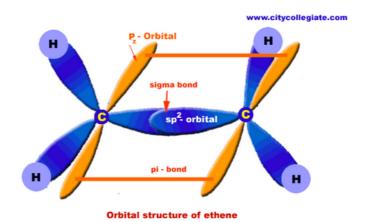

This is possible due to hybridization


Shape of an sp³ hybrid orbital?

Shape of all spanyblid orbital:

Draw the 3-d shape of the molecule, label/shape orbitals

Double bonds

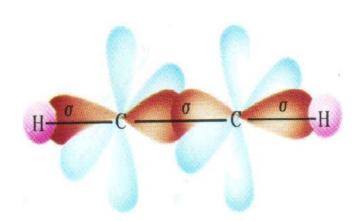

Ex: Ethene CH₂CH₂

Each Carbon needs to bond to 3 atoms, how will it hybridize?

What happens to the unhybridized orbital?

Draw in 3-D, showing all shapes of orbitals and label

Which are the sigma, pi bonds?



A triple bond with C

Ex: C₂H₂

Each C needs how many bonds?

Show the original orbitals and how many e- they hold

Only 2 orbitals hybridize, other 2 do not. This looks like:

Draw the 3-D shape and include proper shape of orbitals. Label sigma and pi bonds.

Hybridization specific to each of the following:

Methyl cation (+CH₃)

Draw C orbitals:

How many bonds?

Type of hybridization?

What is held in the last orbital?

3-D structure

Methyl radical (CH₃)

Draw C orbitals:

How many bonds?

Type of hybridization?

What is held in the last orbital?

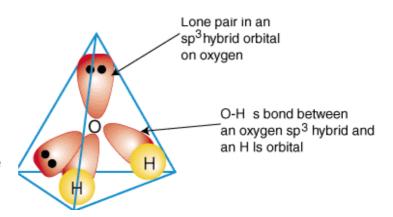
3-D structure

Methyl anion (★ CH₃)

Draw C orbitals:

How many bonds?

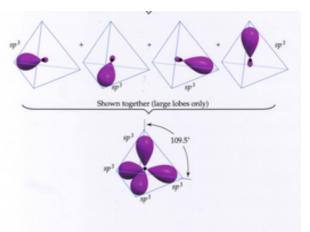
Type of hybridization?


3-D structure

More hybridization:

H₂O

Draw O orbital diagram:


How can it be hybridized so the lone pairs are = and the bonds are =?

NH₃ and NH₄+

How many bonds/lone pairs are on each N?

What type of hybridization exists?

H-Halide bonds

All 3 lone pairs on the halide are = angles, + the bond

Thus they are hybridized as?

Which of the H-halides has the weakest bond? (HF, HCI, HBr, HI)

Table 1.6	able 1.6 Hydrogen–Halogen Bond Lengths and Bond Strengths				
Hydrogen halide		Bond length (Å)	Bond strength kcal/mol kJ/mol		
н—ғ	H ₂ F	0.917	136	571	
H—Cl H—Br	H	1.2746 1.4145	103 87	432 366	
н—і	H Br	1.6090	71	298	
	10	1			

Hybridization in summary:

For the Atoms of Carbon, Oxygen and Nitrogen

- Look for and count the # of Pi bonds present in molecule

Pi Bonds

none = sp3

1 = sp2

2 = sp