2.8 Rewrite Equations and Formulas

Before

You wrote functions and used formulas.

Now

You will rewrite equations and formulas.

Why?

So you can solve a problem about bowling, as in Ex. 33.

Key Vocabulary

- literal equation
- formula

The equations 2x + 5 = 11 and 6x + 3 = 15 have the general form ax + b = c. The equation ax + b = c is called a **literal equation** because the coefficients and constants have been replaced by letters. When you solve a literal equation, you can use the result to solve any equation that has the same form as the literal equation.

Determine whether the equation is in function form.

1.
$$2x + y = 8$$

2.
$$x = 3y - 4$$

3.
$$y = 1 - 8x$$

YES

$$x^{2} + 2x + y = 8 = 2x + 8$$

$$\frac{1}{3} \cdot (\frac{1}{3}) = \frac{1}{3} \cdot (\frac{1}{3})$$

Write the equation in function form.

4.
$$y + 10x = 3$$

5.
$$y - 13 = 4x$$

6.
$$8x + y - 4 = 0$$

7.
$$4x + 2y = 14$$

8.
$$3y - 9x = 27$$

9.
$$16 + 2y = 18x$$

$$\frac{1}{2} \cdot 2y = (-4x + 14) \frac{1}{2} \cdot (-4x + 14) \frac{$$

10.
$$15x - 5y = 20$$

11.
$$2x - 3y = 6$$

12.
$$24 - 4y = 8x$$

$$3x_{1} = 6 + 2x$$

$$-3y_{2} = (-2x + 6)(-\frac{1}{3})$$

$$y = 3x + 2$$

13.
$$5x + 2y = 16$$

14.
$$-7x - 3y = 18$$

13.
$$5x + 2y = 16$$
 14. $-7x - 3y = 18$ **15.** $4y - 4x + 4 = 0$

Solve the literal equation.

16. Solve P = R - C for *C*.

17. Solve F = ma for m.

18. Solve
$$I = \frac{E}{R}$$
 for R .

19. Solve
$$ax - by = c$$
 for x .

$$B_{y} \rightarrow A \times + B_{y} = C + B_{y}$$

$$A \times - (B_{y} - C) \cdot A$$

$$A \times - B_{y} + C$$

$$A \times B_{y} + C$$

Solve the formula for the indicated variable.

20. Circumference of a circle: $C = 2\pi r$. Solve for r.

21. Volume of a pyramid: $V = \frac{Bh}{3}$. Solve for *B*.

22. Perimeter of a rectangle: $P = 2\ell + 2w$. Solve for w.

23. Pencil Holder You are decorating a clean soup can to make a pencil holder. You are going to glue yarn around the top and bottom of the can. The total amount y of yarn (in inches) you need is given by the equation $y = 4\pi r$, where r is the radius of the can.

1

b. What is the radius of the can if you need 37.68 inches of yarn? Use 3.14 for π .

37.68:4.77

- **24. Investment** An advertisement for a bank states that you can earn \$50 interest in one year by investing in a savings account that earns 4% interest. Use the simple interest formula I = Prt, where I is the interest on an investment of P dollars at an interest rate r for t years.
 - **a.** Which variable should you solve for to find the amount of money you need to invest to earn the \$50 in interest?
 - **b.** Solve the simple interest equation for the variable you identified in part (a).
 - **c.** How much money do you need to invest?

TWO OR MORE VARIABLES An equation in two variables, such as 3x + 2y = 8, or a formula in two or more variables, such as $A = \frac{1}{2}bh$, can be rewritten so that one variable is a function of the other variable(s).

EXAMPLE 2 Rewrite an equation

Write 3x + 2y = 8 so that y is a function of x.

$$3x + 2y = 8$$
 Write original equation.

$$2y = 8 - 3x$$
 Subtract 3x from each side.

$$y = 4 - \frac{3}{2}x$$
 Divide each side by 2.

Practice Level A

1. no **2.** no **3.** yes **4.**
$$y = 3 - 10x$$

5.
$$y = 4x + 13$$
 6. $y = 4 - 8x$ **7.** $y = 7 - 2x$

8.
$$y = 3x + 9$$
 9. $y = 9x - 8$ **10.** $y = 3x - 4$

11.
$$y = \frac{2}{3}x - 2$$
 12. $y = 6 - 2x$

13.
$$y = 8 - \frac{5}{2}x$$
 14. $y = -\frac{7}{3}x - 6$

15.
$$y = x - 1$$
 16. $C = R - P$ **17.** $m = \frac{F}{a}$

18.
$$R = \frac{E}{I}$$
 19. $x = \frac{c + by}{a}$ **20.** $r = \frac{C}{2\pi}$

21.
$$B = \frac{3V}{h}$$
 22. $w = \frac{P - 2\ell}{2}$ **23.** a. $r = \frac{y}{4\pi}$

b. 3 in. **24.** a.
$$P$$
 b. $P = \frac{I}{rt}$ c. \$1250

Name _

Date __

Practice B

For use with the lesson "Rewrite Equations and Formulas"

Write the equation in function form.

1.
$$4x + y = -10$$

2.
$$6 - y = 17x$$

2.
$$6 - y = 17x$$
 3. $y - 3x - 11 = 0$

4.
$$2x + 2y = 8$$

5.
$$6x - 3y = 12$$
 6. $16 - 8y = 4x$

6.
$$16 - 8v = 4x$$

7.
$$5x - 7y = 14$$

8.
$$9y - 4x - 9 = 0$$
 9. $15 + 3y = -24x$

9.
$$15 + 3y = -24x$$

10.
$$4 + 6y = 12x - 3$$

11.
$$4 - 10v = 22 - 6x$$

10.
$$4 + 6y = 12x - 2$$
 11. $4 - 10y = 22 - 6x$ **12.** $8x - 2y - 5 = 11$

Solve the literal equation.

13. Solve
$$R = R_1 + R_2$$
 for R_2 .

15. Solve
$$C = \frac{Q}{V}$$
 for V .

14. Solve
$$I = Prt$$
 for r .

16. Solve
$$y = mx + b$$
 for m .

Solve the formula for the indicated variable.

- **17.** Area of a trapezoid: $A = \frac{h}{2}(b_1 + b_2)$. Solve for h.
- **18.** Area of a rhombus: $A = \frac{1}{2}d_1d_2$. Solve for d_1 .

- **19.** Guitar Practice You practice playing your guitar every day. You spend 15 minutes practicing chords and the rest of the time practicing a new song. So the total number of minutes y you practice for the week is given by y = 7(15 + x), where x is the number of minutes you spend on practicing a new song.
 - **a.** Solve the equation for *x*.
 - **b.** How many minutes did you spend on a new song if you practiced 210 minutes last week? 245 minutes? 315 minutes?
- **20.** Discounts Solve for r in the formula S = L rL where S is the sale price, L is the list price, and r is the discount rate.
 - **a.** An item with a list price of \$128 goes on sale for \$51.20. Find the discount rate.
 - **b.** An item with a list price of \$56.80 goes on sale for \$36.92. Find the discount rate.
- **21.** Cookbook You bought a cookbook while on a recent trip overseas. All of the oven temperatures are in degrees Celsius and the only formula you can remember for temperature is how to convert Fahrenheit to Celsius: $C = \frac{5}{9}(F 32)$.
 - **a.** Solve the equation for *F*.
 - **b.** A recipe tells you to bake a pie in the oven at 149°C. What is this temperature in degrees Fahrenheit? Round your answer to the nearest whole degree.

Practice Level B

1.
$$y = -4x - 10$$
 2. $y = 6 - 17x$

3.
$$y = 3x + 11$$
 4. $y = 4 - x$ **5.** $y = 2x - 4$

6.
$$y = 2 - \frac{1}{2}x$$
 7. $y = \frac{5}{7}x - 2$ **8.** $y = \frac{4}{9}x + 1$

9.
$$y = -8x - 5$$
 10. $y = 2x - 1$

11.
$$y = \frac{3}{5}x - \frac{9}{5}$$
 12. $y = 4x - 8$

13.
$$R_2 = R - R_1$$
 14. $r = \frac{I}{Pt}$ **15.** $V = \frac{Q}{C}$

16.
$$m = \frac{y-b}{x}$$
 17. $h = \frac{2A}{b_1 + b_2}$ **18.** $d_1 = \frac{2A}{d_2}$

19. a.
$$x = \frac{y}{7} - 15$$
 b. 15 min; 20 min; 30 min

20.
$$r = \frac{L - S}{L}$$
; **a.** 60% **b.** 35%

21. a.
$$F = \frac{9}{5}C + 32$$
 b. about 300°F

EXAMPLE 1 Solve a literal equation

Solve ax + b = c for x. Then use the solution to solve 2x + 5 = 11.

Solution

STEP 1 Solve
$$ax + b = c$$
 for x .

$$ax + b = c$$
 Write original equation.

$$ax = c - b$$
 Subtract *b* from each side.

$$x = \frac{c - b}{a}$$
 Assume $a \neq 0$. Divide each side by a .

STEP 2 Use the solution to solve 2x + 5 = 11.

$$x = \frac{c - b}{a}$$
 Solution of literal equation
= $\frac{11 - 5}{2}$ Substitute 2 for a , 5 for b , and 11 for c .
= 3 Simplify.

The solution of 2x + 5 = 11 is 3.

VARIABLES IN DENOMINATORS In Example 1, you must assume that $a \neq 0$ in order to divide by a. In general, if you have to divide by a variable when solving a literal equation, you should assume that the variable does not equal 0.

√

GUIDED PRACTICE

for Example 1

Solve the literal equation for x. Then use the solution to solve the specific equation.

1.
$$a - bx = c$$
; $12 - 5x = -3$ $x = \frac{a - c}{b}$; 3 2. $ax = bx + c$; $11x = 6x + 20$ $x = \frac{c}{a - b}$; 4

EXAMPLE 3 Solve and use a geometric formula

The area *A* of a triangle is given by the formula $A = \frac{1}{2}bh$ where *b* is the base and *h* is the height.

- **a.** Solve the formula for the height *h*.
- b. Use the rewritten formula to find the height of the triangle shown, which has an area of 64.4 square meters.

Solution

a.
$$A = \frac{1}{2}bh$$
 Write original formula.

$$2A = bh$$
 Multiply each side by 2.

$$\frac{2A}{b} = h$$
 Divide each side by b.

b. Substitute 64.4 for *A* and 14 for *b* in the rewritten formula.

$$h = \frac{2A}{h}$$
 Write rewritten formula.

$$=\frac{2(64.4)}{14}$$
 Substitute 64.4 for A and 14 for b.

▶ The height of the triangle is 9.2 meters.

Animated Algebra at my.hrw.com

GUIDED PRACTICE for Examples 2 and 3

- 3. Write 5x + 4y = 20 so that y is a function of x. $y = 5 \frac{5}{4}x$
- 4. The perimeter P of a rectangle is given by the formula $P=2\ell+2w$ where ℓ is the length and w is the width.
 - **a.** Solve the formula for the width w.
 - **b.** Use the rewritten formula to find the width of the rectangle shown. 2.4 ft

$$P = 19.2 \, \text{ft}$$
 w

EXAMPLE 4 Solve a multi-step problem

TEMPERATURE You are visiting Toronto, Canada, over the weekend. A website gives the forecast shown. Find the low temperatures for Saturday and Sunday in degrees Fahrenheit. Use the formula $C = \frac{5}{9}(F - 32)$ where C is the temperature in degrees Celsius and *F* is the temperature in degrees Fahrenheit.

Solution

STEP 1

Rewrite the formula. In the problem, degrees Celsius are given and degrees Fahrenheit need to be calculated. The calculations will be easier if the formula is written so that *F* is a function of *C*.

$$C = \frac{5}{9}(F - 32)$$
 Write original formula.
$$\frac{9}{5} \cdot C = \frac{9}{5} \cdot \frac{5}{9}(F - 32)$$
 Multiply each side by $\frac{9}{5}$, the reciprocal of $\frac{5}{9}$.
$$\frac{9}{5}C = F - 32$$
 Simplify.
$$\frac{9}{5}C + 32 = F$$
 Add 32 to each side.

▶ The rewritten formula is $F = \frac{9}{5}C + 32$.

STEP 2 Find the low temperatures for Saturday and Sunday in degrees Fahrenheit.

Saturday (low of 14°C)

$$F = \frac{9}{5}C + 32$$

$$= \frac{9}{5}(14) + 32$$

$$= 25.2 + 32$$

$$= 57.2$$

▶ The low for Saturday is 57.2°F.

Sunday (low of 10°C)

$$F = \frac{9}{5}C + 32$$

$$= \frac{9}{5}(10) + 32$$

$$= 18 + 32$$

$$= 50$$

▶ The low for Sunday is 50°F.

GUIDED PRACTICE

for Example 4

5. Use the information in Example 4 to find the high temperatures for Saturday and Sunday in degrees Fahrenheit. **71.6°F, 60.8°F**