

$$x + ay = \lambda$$

$$y = \frac{1}{2}x + 1$$

$$y = \frac{1}{2}x + 1$$

$$y = -\frac{1}{2}x + 1$$

$$y = -\frac{1}{2}x$$

Circular Cross Sections

The only thing that changes when the cross sections of a solid are circular is the formula for A(x). Many such solids are solids of revolution, as in the next example.

EXAMPLE 2 A Solid of Revolution

The region between the graph of $f(x) = 2 + x \cos x$ and the x-axis over the interval [-2, 2] is revolved about the x-axis to generate a solid. Find the volume of the solid.

EXAMPLE 3 Washer Cross Sections

The region in the first quadrant enclosed by the y-axis and the graphs of $y = \cos x$ and $y = \sin x$ is revolved about the x-axis to form a solid. Find its volume.

- **29.** Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 2 and x = 0 about
 - (a) the x-axis.
- (b) the y-axis.
- (c) the line y = 2.

- 30. Find the volume of the solid generated by revolving the triangular region bounded by the lines y = 2x, y = 0, and x = 1 about
 - (a) the line x = 1. (b) the line x = 2.

- **31.** Find the volume of the solid generated by revolving the region bounded by the parabola $y = x^2$ and the line y = 1 about
 - (a) the line y = 1. (b) the line y = 2.
 - (c) the line y = -1.

Homework 8.3:

Day 1 1-7 odd,39 (cross sections)

Day 2 11,16,19,22(circles and washers)
Day 3 9,23,27,41(rotate around the y-axis)