#### Section 8.2

Areas in the Plane

### What you'll learn about



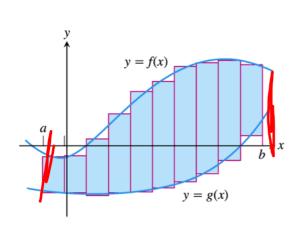
- Area Between Curves
- Area Enclosed by Intersecting Curves
- Boundaries with Changing Functions
- Integrating with Respect to y
- Saving Time with Geometric Formulas

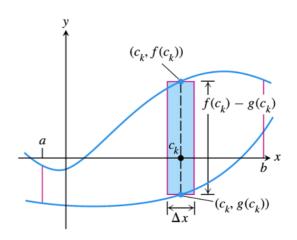
#### ...and why

The techniques of this section allow us to compute areas of complex regions of the plane.

## Area Between Curves

Partition the region into vertical strips of equal width  $\Delta x$ . Each rectangle has area  $[f(c_k) - g(c_k)]\Delta x$  for some  $c_k$  in its respective subinterval. Approximate the area of each region with the Riemann sum  $\sum [f(c_k) - g(c_k)] \Delta x$ .





The limit of these sums as  $\Delta x \to 0$  is  $\int_a^b [f(x) - g(x)] dx$ .

### Area Between Curves

If f and g are continuous with  $f(x) \ge g(x)$  throughout [a,b], then the area between the curves y = f(x) and y = g(x) from a to b is the integral of [f-g] from a to b,

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

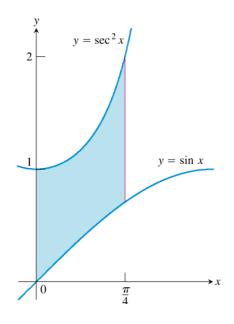
# Example Applying the Definition

Find the area of the region between  $y = \cos x$  and  $y = \sin x$ 

Find the area of the region between 
$$y = \cos x$$
 and  $y = \sin x$   
from  $x = 0$  to  $x = \sqrt[3]{4}$   
 $\sin x + \cos x$   
 $\sin x + \cos x$ 

### **EXAMPLE 1** Applying the Definition

Find the area of the region between  $y = \sec^2 x$  and  $y = \sin x$  from x = 0 to  $x = \pi/4$ .



$$\int_{0}^{\sqrt{2}} \sec^{2}x - \sin x \, dx$$

$$\int_{0}^{\sqrt{2}} \sec^{2}x - \sin x \, dx$$

$$\int_{0}^{\sqrt{2}} \tan x + \cos x \, dx$$

$$\int_{0}^{\sqrt{2}} \tan x + \cos x \, dx$$

$$\left(\tan x + \cos x \, dx\right) - \left(\tan x + \cos x\right)$$

$$\left(1 + \frac{\sqrt{2}}{2}\right) - \left(0 + 1\right)$$

$$\left(1 + \frac{\sqrt{2}}{2}\right) - \left(0 + 1\right)$$

$$\left(\frac{\sqrt{2}}{2}\right)^{2}$$

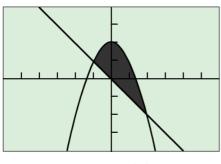
# Example Area of an Enclosed Region



Find the area of the region enclosed by the parabola  $y = x^2 - 1$  and y = x + 1.

### **EXAMPLE 2** Area of an Enclosed Region

Find the area of the region enclosed by the parabola  $y = 2 - x^2$  and the line y = -x.



[-6, 6] by [-4, 4]

## **Example Using Geometry**

Find the area of the region enclosed by the graphs of  $y = \sqrt{x+1}$ ,

$$y = x - 1$$
 and the x-axis.

$$\sqrt{x+1} = (x-1)^{2}$$

$$(x-1)(x-1)$$

$$x+1 = x^{2}-2x+1$$

$$-x-1$$

$$-x-1$$

$$x=0$$

$$x=0$$

$$x=3$$

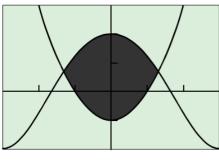
$$\int \sqrt{x+1} - 0 dx + \int \sqrt{x+1} - (x) dx$$

$$3.333 N^{2}$$

$$\sqrt{x+1} dx - \Delta + \sqrt{x+1} - (x) dx$$

### **EXAMPLE 3** Using a Calculator

Find the area of the region enclosed by the graphs of  $y = 2 \cos x$  and  $y = x^2 - 1$ .



[-3, 3] by [-2, 3]

### **EXAMPLE 4** Finding Area Using Subregions

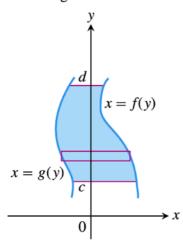
Find the area of the region R in the first quadrant that is bounded above by  $y = \sqrt{x}$  and below by the x-axis and the line y = x - 2.

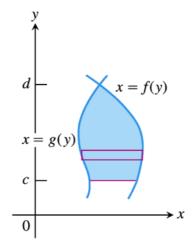
# Integrating with Respect to y

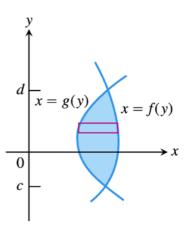


If the boundaries of a region are more easily described by functions of y, use horizontal approximating rectangles.

For regions like these







use this formula

$$A = \int_{c}^{d} [f(y) - g(y)] dy.$$

# Example Integrating with Respect to *y*



### **EXAMPLE 4** Finding Area Using Subregions

Find the area of the region R in the first quadrant that is bounded above by  $y = \sqrt{x}$  and below by the x-axis and the line y = x - 2.

Homework 8.2:

Day 1: 3,6,9,15,18,21,30

Day 2: 12,24,27,36,39,42