Section 8.1

Integral As Net Change

What you'll learn about

Linear Motion Revisited

General Strategy

Consumption Over Time

Net Change from Data

Work

...and why

The integral is a tool that can be used to calculate net change and total accumulation.

Example Linear Motion Revisited

v(t) = 10 - 2t is the velocity in m/sec of a particle moving along the x-axis when $0 \le t \le 9$. Use analytic methods to:

- (a) Determine when the particle is moving to the right, to the left, and stopped.
- **(b)** Find the particle's displacement for the given time interval.
- (c) If s(0) = 3, what is the particle's final position?
- (d) Find the total distance traveled by the particle.

Example Potato Consumption

From 1970 to 1980, the rate of potato consumption in a particular country was $C(t) = 2.2 + 1.1^t$ millions of bushels per year, with t being years since the beginning of 1970. How many bushels were consumed from the beginning of 1972 to the end of 1975?

1976-1970 Syr 2 22+1.1tdt milof bushels 2 4r

alpha window 4

14.692 mil of bushs

EXAMPLE 4 Modeling the Effects of Acceleration

A car moving with initial velocity of 5 mph accelerates at the rate of $\underline{u(t)} = 2.4t$ mph per second for 8 seconds.

- (a) How fast is the car going when the 8 seconds are up?
- (b) How far did the car travel during those 8 seconds?

9)
$$fast=vel = \int accel$$
 $vel = \int 2.4t dt \frac{meh}{sel}$
 $vel = \frac{3.4t^2}{2}|_{0}^{8} = \frac{1.3t^2}{3}|_{0}^{8}$
 $s(t) = \int vel$
 $s(t) = \int vel$

EXAMPLE 6 Finding Gallons Pumped from Rate Data

A pump connected to a generator operates at a varying rate, depending on how much power is being drawn from the generator to operate other machinery. The rate (gallons per minute) at which the pump operates is recorded at 5-minute intervals for one hour as shown in Table 8.1. How many gallons were pumped during that hour?

TABLE 8.1	Pumping Rates
Time (min)	Rate (gal/min)
0	58
5	60
10	65
15	64
20	58
25	57
30	55
35	55
40	59
45	60
50	60
55	63
60	63

Homework 8.1:

Day 1: 1-11 odd

Day 2: 12-17, 20-22, 25, 37