Section 7.4

Homework Day 2: 21-30 by 3,37,42

Exponential Growth and Decay

What you'll learn about

Law of Exponential Change Continuously Compounded Interest Modeling Growth with Other Part Newton Modeling Growth with Other Bases Newton's Law of Cooling

... and why

Understanding the differential equation $\frac{dy}{dx} = ky$ gives us new insight into exponential growth and decay.

6.
$$\frac{dy}{dx} = (\cos y)^2$$

$$\frac{1}{dx} = (\cos y)^2$$

$$\cos^2 y \, dy = | dx \qquad x = 0$$

$$5ec^2 y \, dy = | dx$$

$$\tan y = x + C$$

$$\tan 0 = 0 + C$$

$$0 = C$$

$$\tan^{-1} x \, dy = \tan^{-1} x$$

$$y = \tan^{-1} x$$

$$\vdots$$

$$3.\frac{dy}{dx} = \frac{1}{x}\frac{1}{y} y = \frac{1}{x}$$

$$-\ln x = \ln x + c$$

$$-\ln x = \ln x +$$

EXAMPLE 4 Choosing a Base

At the beginning of the summer, the population of a hive of bald-faced hornets (which are actually wasps) is growing at a rate proportional to the population. From a population of 10 on May 1, the number of hornets grows to 50 in thirty days. If the growth continues to follow the same model, how many days after May 1 will the population reach 100?

$$\begin{array}{c} t & y = y_0 e^{KE} \\ (0,10)(30,50)(t,100) \\ y_0=10 \\ 50=|0e^{K.30} \\ 50=|0e^{K.30} \\ 50=|0e^{K.30} \\ 50=|0e^{K.30} \\ 50=|0e^{K.30} \\ 50=|0e^{K.30} \\ 10=|0e^{K.30} \\ 10=|0e^{5.30} \\ 10$$

Example Finding Half-Life

Find the half-life of a radioactive substance with decay equation

$$y = y_{\mathcal{O}} e^{-kt}.$$

Ex: Find the half-life of:

mail-life of:
$$\frac{dy}{dt} = -.235y$$

$$+ = \frac{\ln 2}{.335}$$

$$+ = 2.950$$

Ex: Scientists who use carbon-14 dating use 5700 years for its half-life. Find the age of a sample in which 10% of the radioactive nuclei originally present have decayed.

$$y = ab$$

 $940 = 40(\frac{1}{2})$
 $9 = 54500$
 $9 = 5500$
 $109.5 = \frac{1}{5700}$
 $109.5 = \frac{1}{5700}$

Half-life

The **half** - **life** of a radioactive substance with rate constant k (k > 0) is

half-life =
$$\frac{\ln 2}{k}$$
.

$$T-T_{\scriptscriptstyle S}=\left(T_{\scriptscriptstyle \mathcal{O}}-T_{\scriptscriptstyle S}\right)e^{-kt},$$

Where $T_{\mathcal{O}}$ is the temperature at time t = 0.

EXAMPLE 6 Using Newton's Law of Cooling

A hard-boiled egg at 98°C is put in a pan under running 18°C water to cool. After 5 minutes, the egg's temperature is found to be 38°C. How much longer will it take the egg to reach 20°C?