Section 7.1

Homework:

Slope Fields and Euler's Method

Day 1: 3-24 by 3

Day 2: 27-48 by 3

What you'll learn about

- Differential Equations
- Slope Fields
- Euler's Method

... and why

Differential equations have been a prime motivation for the study of calculus and remain so to this day.

Differential Equation

An equation involving a derivative is called a **differential equation**. The **order of a differential equation** is the order of the highest derivative involved in the equation.

Example Solving a Differential Equation

Find all functions y that satisfy $\frac{dy}{dx} = 3x^2 + \cos x$. $y = x^3 + \sin x + \cos x$

EXAMPLE 1 Solving a Differential Equation

Find all functions y that satisfy $dy/dx = \sec^2 x + 2x + 5$.

First-order Differential Equation

ile R

If the general solution to a first-order differential equation is continuous, the only additional information needed to find a unique solution is the value of the function at a single point, called an initial condition A differential equation with an initial condition is called an initial-value problem. It has a unique solution, called the particular solution to the differential equation.

Example Solving an Initial Value Problem

Find the particular solution to the equation $\frac{dy}{dx} = e^{2x} - 3x$ whose graph

passes through the point
$$\left(1, \frac{1}{2}\right)$$
.

$$y = \frac{e}{2} - \frac{3x^2}{2} + c$$

$$y = \frac{e^{2x} - 3x^{3} + 2 - e^{3}}{2}$$

Example Using the Fundamental Theorem to Solve an Initial Value Problem

Find the solution to the differential equation

$$f'(x) = \cos(x^2)$$
 for which $f(3) = 5$.

EXAMPLE 4 Using the Fundamental Theorem to Solve an Initial Value Problem

Find the solution to the differential equation $f'(x) = e^{-x^2}$ for which f(7) = 3.

$$y = \int_{-2^{2}}^{x} e^{-2^{2}} dt + 3$$