

Section 6.5 Homework: 1,4,7,9,10a,19ab

Trapezoidal Rule

What you'll learn about

T- 方 (b,+b)

- Trapezoidal Approximations
- Other Algorithms Simpson's Rul
- Error Analysis

... and why

Some definite integrals are best found by numerical approximations, and rectangles are not always the most efficient figures to use.

Trapezoidal Approximations

The Trapezoidal Rule

To approximate $\int_a^b f(x)dx$, use

$$T = \frac{h}{2} (y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n),$$

 $\int f(x) dx$ $\int f(x) dx$

where [a,b] is partitioned into n subintervals of equal length

$$h = (b - a) / n.$$

Equivalently,
$$T = \frac{LRAM_n + RRAM_n}{2}$$
,

where LRAM_n and RRAM_n are the Rienamm sums using the left and right endpoints, respectively, for f for the partition.

1. The function f is continuous on the closed interval [1,7] and has values that are given below:

x	1	4	6	7
f(x)	10	30	40	20

Using the subintervals [1,4], [4,6], and [6,7], what is the trapezoidal approximation of $\int_{1}^{7} f(x) dx^{2}$

$$\frac{3(0+30)}{3(40)} + \frac{3}{3}(30+40) + \frac{1}{3}(40+20)$$

$$\frac{3(40)}{3(40)} + \frac{1}{3}(30+40) + \frac{1}{3}(60)$$

$$\frac{3(40)}{3(40)} + \frac{1}{30}(60)$$

$$\frac{1}{3}(60)$$

EXAMPLE 2 Averaging Temperatures

An observer measures the outside temperature every hour from noon until midnight, recording the temperatures in the following table.

EXAMPLE 1 Applying the Trapezoidal Rule

Use the Trapezoidal Rule with n = 4 to estimate $\int_{1}^{2} x^{2} dx$. Compare the estimate with the value of NINT $(x^{2}, x, 1, 2)$ and with the exact value.

$$h = \frac{2-1}{4} = \frac{1}{4} + \frac{b}{h}$$
 $y = \chi^2$

$$T = \begin{cases} 1 + 2 \begin{pmatrix} 36 \\ 16 \end{pmatrix} + 2 \begin{pmatrix} 46 \\ 16 \end{pmatrix} + 2$$

Simpson's Rule

To approximate $\int_a^b f(x)dx$, use

$$S = \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + \dots + 2y_{n-2} + 4y_{n-1} + y_n),$$

where [a,b] is partitioned into an even number n subintervals of equal length h = (b-a)/n.

EXAMPLE 3 Applying Simpson's Rule

Use Simpson's Rule with n = 4 to approximate $\int_0^2 5x^4 dx$.

TABLE 6.5			
х	$y = 5x^4$		
0	0		
<u>1</u>	$\frac{5}{16}$		
$\overline{2}$	16		
1	5		
$\frac{3}{2}$	405		
$\overline{2}$	16		
2	80		