ΔD	Calc	Onia	Review	Q 2
α	Carc	Quiz	I/E A IE AA	\circ

Name		
I VAILIE	 	
D1		

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find a formula for the area $A(x)$ of the cross sections of the solid perpendicular to the x-axis.
1) The solid lies between planes perpendicular to the x-axis at $x = -2$ and $x = 2$. The cross sections
perpendicular to the x-axis between these planes are squares whose bases run from the semicine
$y = -\sqrt{4 - x^2}$ to the semicircle $y = \sqrt{4 - x^2}$.
A) $2\sqrt{4-x^2}$
$S=2\sqrt{4-x^2}$ $A=(2\sqrt{4-x^2})$ $A=(4-x^2)$ $A=(4-x^2)$ $A=(4-x^2)$
2 11-10 7
$V = \int_{0}^{\infty} 10^{-4} x^{2} dx$
$-\frac{3}{2}$
$V=2\left[\frac{16x-4x^3}{3}\right]$
$\left(\frac{32}{1} - \frac{32}{3}\right) - \left(0\right)$
96 - 32
$2\left(\frac{64}{3}\right) = \boxed{128}$

Find the volume of the solid generated by revolving the region bounded by the given lines and curves about the x

2)
$$y = x^2$$
, $y = 0$, $x = 0$, $x = 4$

2)

$$onumber ■ B) $onumber \frac{1024}{5} π$$$

D)
$$\frac{64}{3}\pi$$

3)
$$y = -3x + 6$$
, $y = 3x$, $x = 0$

Α) 9π

B) 6π

C) 54π

OD) 18π

3) ___

$$R^2 = (-3 \times +6)^2$$

$$(r^{\frac{1}{2}}(3\times)^{2})$$

$$V = \pi \int_{0}^{\infty} (-3x+6)^{2} - (3x)^{2} dx$$

$$(-3x+6)(-3x+6)$$

$$V = \prod_{0}^{1} \int_{0}^{1} -36x + 36 - 9x^{2}$$

$$V = \prod_{0}^{1} -36x^{2}$$

$$\pi \left[-18x^2 + 36x \right]_{0}^{1}$$

$$TI \left(-18 + 36 \right) - (0)$$
 $18TI \sqrt{3}$

Find the volume of the solid generated by revolving the region about the given line.

4) The region in the first quadrant bounded above by the line y = 3, below by the line $y = \frac{3x}{2}$, and on

Find the volume of the solid generated by revolving the region about the y-axis.

5) The region enclosed by $x = \frac{6}{y}$, x = 0, y = 1, y = 2

5) ____

D) 9π

Circles
$$A = TY^2$$

$$V = T \int_{0}^{2} \frac{6y^2}{4y}$$

$$V = T \int_{0}^{2} \frac{6y^2}{4y}$$

$$V = T \int_{0}^{2} \frac{36y^2}{4y}$$

$$T \left[\frac{36y^{-1}}{-14} \right]_{0}^{2}$$

$$T \left[\frac{-36}{2} \right]_{0}^{2}$$