Evaluate the integral. Use Integration by Parts

 $e^{(9^{\times}-81)}$

Use tabular integration to find the antiderivative.

2)
$$\int (x^2 - 5x) e^x dx$$

A) $\frac{1}{3}x^3e^x - \frac{5}{2}x^2e^x + C$

B)
$$e^{x}[x^2 - 7x - 7] + C$$

oc)
$$e^{x[x^2-7x+7]+C}$$

$$deriv \quad anti$$

$$x^2-5x \quad e^x$$

$$2x-5\sqrt{-e^x}$$

$$e^{x}(x^{2}-5x) - e^{x}(ax-5) + e^{x}(a) + e^{x}(x^{2}-5x) - e^{x}(x^{2}-5) + e^{x}(a) + e^{x}(x^{2}-5) + e^{x}(ax-5) + e^{x}($$

$$e^{\times (\chi^2 - 7\chi + 7)} + C$$

Use separation of variables to solve the initial value problem.

3)
$$y' = 8xy$$
 and $y = 3$ when $x = 0$

$$dx \perp \frac{dy}{dx} = 8xy \cdot \frac{1}{y} dx$$

$$\frac{1}{y} dy = 8xdx$$

$$\frac{1}{y} dy = 8xdx$$

$$\frac{8x^2}{8x^2} + C \qquad (0,3)$$

$$\frac{1}{y} = 4x^2 + C$$

$$\frac{1}{y}$$

Find the solution of the differential equation
$$\frac{dy}{dt} = ky$$
, it a constant, that satisfies the given conditions.

4) $y(0) = 1710$, $k = -2.5$

1) $y = 1710$

2) $y = 1710$

1) $y = 1710$

2) $y = 1710$

3) $y = 1710$

4) $y = 1710$

2) $y = 1710$

3) $y = 1710$

4) $y = 1710$

2) $y = 1710$

3) $y = 1710$

4) $y = 1710$

3) $y = 1710$

4) $y = 1710$

5) $y = 1710$

6) $y = 1710$

7) $y = 1710$

8) $y =$

Solve the problem.

5) Find the amount of time required for a \$19,000 investment to double if the annual interest rate r is 5.2% and interest is compounded continuously. Round your answer to the nearest hundredth of a

A) 189.47 years

 13.33 years C) 202.80 years D) 1.89 years

6) A bacterial culture has an initial population of 10,000. Nits population declines to 6000 in 6 hours, what will it be at the end of 8 hours? Assume that the population decreases according to the exponential model.

at will it be at the end of 8 hours? Assume that the population decreases to the exponential model.

$$P = 10000 \qquad (4.600)$$

$$A = Pert$$

$$6000 = 10000e^{r(6)}$$

$$10000 \qquad 10000$$

$$6 = e^{br}$$

$$1 = 8hrs$$

$$A = Pert$$

$$A = 10000e^{-.085...(8)}$$

$$A = 5060.595\%$$

$$5061 back$$

7) How long will it take a sample of radioactive substance to decay to half of its original amount, if it decays according to the function $A(t) = 350e^{-.102t}$, where t is the time in years? Round your answer to the nearest hundredth year.

$$\frac{175 = 350 e^{-102t}}{350}$$

$$\frac{1}{350} = e^{-.102t}$$

$$\frac{1}{3} = -.102t$$

$$\frac{1}{3} = -.102t$$

$$L = \frac{102}{102}$$

$$L = \frac{102}{-102}$$

$$L = 6.7955$$

$$L = 6.80$$

Use Newton's Law of Cooling to solve the problem.

8) A dish of lasagna baked at 350°F is taken out of the oven into a kitchen that is 69°F. After 5 minutes, the temperature of the lasagna is 304.9°F. What will its temperature be 15 minutes after it was taken out of the oven? Round your answer to the nearest degree.