Find a formula for the area A(x) of the cross sections of the solid perpendicular to the x-axis.

- BI V
- 1) The solid lies between planes perpendicular to the x-axis at x = -2 and x = 2. The cross sections perpendicular to the x-axis between these planes are squares whose bases run from the semicircle  $y = -\sqrt{4 - x^2}$  to the semicircle  $y = \sqrt{4 - x^2}$ .
  - $\circ$  A)  $4(4-x^2)$
- B)  $2(4 x^2)$
- C)  $2\sqrt{4-x^2}$





J4-X2 - (- V4-x2)

Area = 
$$(2\sqrt{4-x^2})^2$$
  
=  $(4-x^2)^2$ 

Find the volume of the solid generated by revolving the region bounded by the given lines and curves about the x-axis.

- 2)  $y = x^2$ , y = 0, x = 0, x = 4
- B) 
   1024 π
- D)  $\frac{64}{2}\pi$



r = y-valur

$$r=x^2$$











Area = 
$$\pi \frac{36}{5}$$
  
 $36\pi \int_{-9^{-1}}^{2} dy$   
 $36\pi \left(-\frac{1}{2} - 1\right)$   
 $36\pi \left(\frac{1}{2}\right) = 18\pi$