Math Studies study guide

name			
period			

1) If $g(x) = 5^{-x}$, find:

a	g(1)	
a)	5-1	$-\left(\frac{1}{\Gamma}\right)$
,		15/

- **b** g(3)b) $5^{-\frac{3}{5}} = \frac{1}{5^3}$ c) $5^{\circ} = 1$

- 2) Given $f(x) = 4 (1/2)^x + 3$
 - a) identify the y-intercept (0,7)
 - b) identify the horizontal asymptote \(\sqrt{2} \)
 - c) identify the equation as exponential growth of decay

e) sketch the curve on axis below

(label appropriate parts)

3) Solve each equation: (show how to solve for (t) by hand)

$$a(4) = 200$$

$$x = \frac{1}{5} = \frac{1}{5}$$
 $x = \frac{1}{5} = \frac{1}{5}$
 $x = \frac{1}{5} = \frac{1}{5}$
 $x = \frac{1}{5} = \frac{1}{5}$
 $x = \frac{1}{5} = \frac{1}{5}$

b) $720 (1/3)^x = 120$

b)____

1

The value of a car depreciates according to the formula $C(t) = 4500 \times (0.68)^{t} + 500$ euros, where Δt is the age of the car in years.

- a Sketch a graph of C(t) against t.
- **b** What was the initial cost of the car?
- How much is the car worth after $4\frac{1}{2}$ years?
- d State the equation of the horizontal asymptote of C(t). What does this mean?
- e How long will it take for the car's value to drop to €1000?

- b) 6 5000
- c) <(4.5)=1293.42
- d) <u>4=500</u>
- e) ____

$$\frac{1000 = 4500 \times (.68)^{+}}{9} = (.68)^{+}$$

$$\frac{ln(\frac{1}{9})}{l(.68)} = +$$

Syears 8 months