Math Studies

A)

- 1) Does f(x) represent exponential growth or decay?
- 2) As x approaches infinity what does y approach?
- 3) As x approaches (-) infinity what does y approach?
- 4) Identify the domain of f(x):
- 6) Horiz. Asym
- 7) Is (0,1) a point on the graph? If not what is y-int
- 8) Sketch Curve

B)

 $f(x) = _{\underline{}} 3 \cdot \frac{1}{5}$

- 1) Does f(x) represent exponential growth or decay?)
- 2) As x approaches infinity what does y approach? _____
- 3) As x approaches (-) infinity what does y approach?
- 4) Identify the domain of f(x):
- 5) Identify the range of f(x):
- 6) Is (0,1) a point on the graph? /// If not what is y-int $(\)$
- 7) Sketch Curve

C)

 $f(x) = \frac{1}{5} \cdot \frac{7}{x}$

- 1) Does f(x) represent exponential growth or decay? ___
- 2) As x approaches infinity what does y approach? _____
- 3) As x approaches (-) infinity what does y approach?
- 4) Identify the domain of f(x):
- 5) Identify the range of f(x):
- 6) Is (0,1) a point on the graph? N_b If not what is y-in(N_b
- 7) Sketch Curve

D)

 $f(x) = \frac{2}{3} \cdot \left(\frac{1}{4}\right)^{-x}$

- 1) Does f(x) represent exponential growth or decay? _
- 2) As x approaches infinity what does y approach?
- (3) As x approaches (-) infinity what does y approach? _____
- 4) Identify the domain of f(x):
- (5) dentify the range of f(x):
- 6) Is (0,1) a point on the graph? $\sqrt[3]{2}$ If not what is y-int
- 7) Sketch Curve

E)

 $f(x) = 2(3)^{-x} + 4$

- 1) Does f(x) represent exponential growth of decay?
- 2) As x approaches infinity what does y approach? _
- 3) As x approaches (-) infinity what does y approach? _____
- 4) Identify the domain of f(x):
- 5) Identify the range of f(x): $(4, \infty)$
- 6) Is (0,1) a point on the graph? $\triangle \cup$ If not what is y-int $\bigcirc \cup$
- 7) Sketch Curve

F)

 $f(x) = \underbrace{4 \left(\frac{1}{2} \right)^{x} + 1}$

- 1) Does f(x) represent exponential growth of decay?
- 2) As x approaches infinity what does y approach?
- 3) As x approaches (-) infinity what does y approach?
- 4) Identify the domain of f(x):__
- 5) Identify the range of f(x): ()
- 6) Is (0,1) a point on the graph? $\underline{\wedge}\underline{\wedge}$ If not what is y-int $\underline{\wedge}\underline{\wedge}$
- 7) Sketch Curve

G)

 $f(x) = 3 \cdot 5^{x} - 1$

- 1) Does f(x) represent exponential growth or decay?
- 2) As x approaches infinity what does y approach? _____
- 3) As x approaches (-) infinity what does y approach?
- 4) Identify the domain of f(x):
- 5) Identify the range of f(x):
- 6) Is (0,1) a point on the graph? $N \bigcirc$ If not what is y-int \bigcirc

7) Sketch Curve

H)

$$f(x) = -(7)^{x} - 4$$

- 1) Does f(x) represent exponential growth or decay?
- 2) As x approaches infinity what does y approach? ∞
- 3) As x approaches (-) infinity what does y approach? \checkmark
- 4) Identify the domain of f(x):__/k
- 5) Identify the range of f(x):
- 6) Is (0,1) a point on the graph? ____ If not what is y-int (0,-5)
- 7) Sketch Curve

 $6.2^{x}-8=7$ 6-2×=15 2 x = 15 X log 2 = log 15 X = Qug 15 P(N. 2)