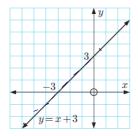
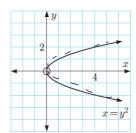


RELATIONS AND FUNCTIONS RELATIONS RELATIONS


A **relation** is any set of points which connect two variables.


A relation is often expressed in the form of an equation connecting the variables x and y. In this case the relation is a set of points (x, y) in the Cartesian plane.

X=X=48

Y=3X+9

For example y = x + 3 and $x = y^2$ are the equations of two relations. Each equation generates a set of ordered pairs, which we can graph:

However, a relation may not be able to be defined by an equation. For example:

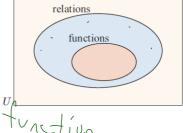
(1) y x

The set of all points in the first quadrant is a relation.

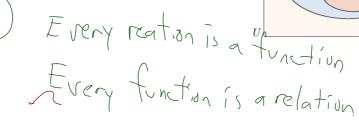
x > 0, y > 0

(2) y

These 13 points form a relation.


FUNCTIONS

A **function**, sometimes called a **mapping**, is a <u>relation</u> in which no two different ordered pairs have the same *x*-coordinate or first component.


We can see from the above definition that a function is a special type of relation.

Every function is a relation, but not every relation is a function.

This can be represented in set form as shown.

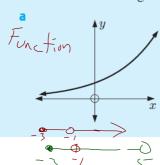
TESTING FOR FUNCTIONS

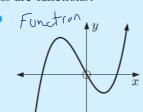
Algebraic Test:

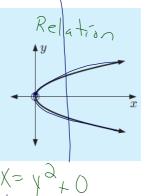
If a relation is given as an equation, and the substitution of any value for x results in one and only one value of y, then the relation is a function.

For example:

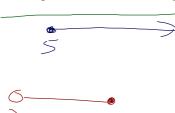
y y = 3x - 1 is a function, as for any value of x there is only one corresponding value of $y = y^2$ is not a function, since if x = 4 then $y = \pm 2$.


Geometric Test or Vertical Line Test:


If we draw all possible vertical lines on the graph of a relation, the relation:

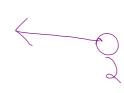

- is a function if each line cuts the graph no more than once
- is not a function if at least one line cuts the graph more than once.

Which of the following relations are functions?



GRAPHICAL NOTE

- If a graph contains a small **open circle** such as —•—, this point is **not included**. (
- If a graph contains a small **filled-in circle** such as ——•, this point **is included**.



X< 0

 $(-\infty,2)$