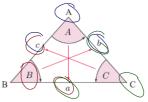
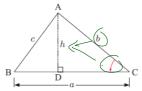
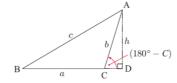


AREAS OF TRIANGLES


If we know the base and height measurements of a triangle, we can calculate the area using area = $\frac{1}{2}$ base \times height.


THE AREA OF A TRIANGLE FORMULA


Suppose triangle ABC has angles of size $A,\,B,\,{\rm and}\,\,C,\,{\rm and}$ the sides opposite these angles are labelled a, b, and c respectively.

Any triangle that is not right angled must be either acute or obtuse. In either case we construct a perpendicular from A to D on BC (extended if necessary).

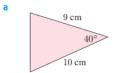
Using right angled trigonometry:

$$\sin C = \frac{h}{b}$$

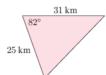
$$h = b \sin C$$

$$\sin(180^{\circ} - C) = \frac{h}{b}$$

$$\therefore h = b\sin(180^{\circ} - C)$$

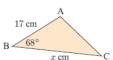

$$\therefore h = b\sin C$$

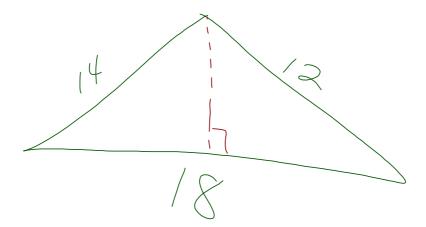
$$h = b \sin C$$

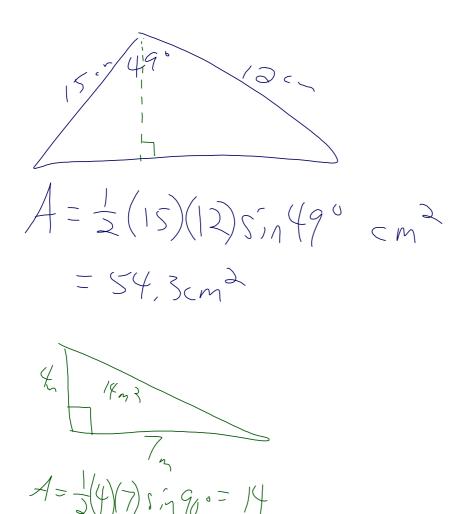

So, area
$$=\frac{1}{2}ah$$
 gives $A = \frac{1}{2}a\underline{b}\sin C$.

Using different altitudes we can show that the area is also $\frac{1}{2}bc\sin A$ or $\frac{1}{2}ac\sin B$.

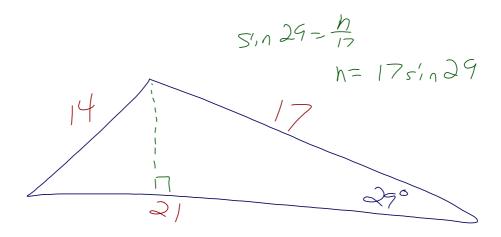
1 Find the area of:



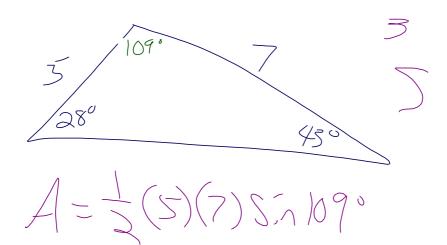


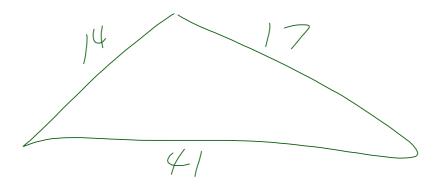

2 If triangle ABC has area 150 cm², find the value of x:

- 3 Calculate the area of:
 - an isosceles triangle with equal sides of length $21~\mathrm{cm}$ and an included angle of 49°
 - b an equilateral triangle with sides of length 57 cm.
- A parallelogram has adjacent sides of length 4 cm and 6 cm. If the included angle measures 52° , find the area of the parallelogram.
- 5 A rhombus has sides of length 12 cm and an angle of 72°. Find its area.



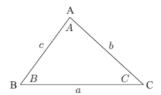
46° 25 ASSA



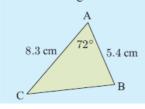

9

 $A = \pm (9)(15) \sin 27^{8}$

\(\frac{1}{2} \left(2 \right) \left(17 \right) \(\frac{1}{2} \right) \)



THE COSINE RULE


The cosine rule involves the sides and angles of any triangle. The triangle does not need to contain a

In any $\triangle ABC$ with sides a, b, and c units in length, and opposite angles A, B, and C respectively:

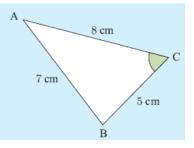
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

or $b^{2} = a^{2} + c^{2} - 2ac \cos B$
or $c^{2} = a^{2} + b^{2} - 2ab \cos C$

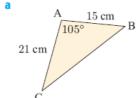
Find the length BC:

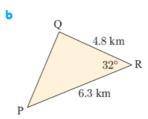
If we know all three sides of a triangle, we can rearrange the cosine rule formulae to find any of the angles:

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

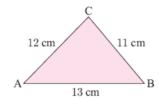

$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} \qquad \cos B = \frac{c^2 + a^2 - b^2}{2ca} \qquad \cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

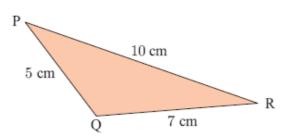

We use the inverse cosine ratio \cos^{-1} to evaluate the angle.


Ex. In triangle ABC, AB = 7 cm, BC = 5 cm, and CA = 8 cm.

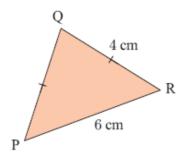
Find the measure of angle BCA.



1 Find the length of the remaining side in the given triangle:



2 Find the measure of all angles of:



3 Find the measure of obtuse angle PQR:

a

b

- 4 a Find the smallest angle of a triangle with sides 11 cm, 13 cm, and 17 cm.
 - **b** Find the largest angle of a triangle with sides 4 cm, 7 cm, and 9 cm.