

a) Using planar hexagon representatation for the cyclohexane ring and wedges/dashed lines for the sustitu draw structural formulas for the other cis, trans isomers of 2-isopropyl-5-methylcyclohexanol.

MENTHOL

Х

.

b) Draw the more stable chair conformer for each of your answers in part (a)

4

CH₃

e thirt

c) Circle the chair representation of the one isomer that is the most stable.

Name the following cis-trans pairs:

H Br

Cis H

1,3-dichlorocyclohexane

1-bromo-2-meterylay dohexane

B > A > D > C

Draw all possible staggered and eclipsed conformations of 1-bromo-2-chloroethane using Newman projections. Rank the conformations in order of decreasing stability.

Conformations of Cycloalkanes; Cis-Trans Isomerism

D>C>B>A

- Draw the formula for the preferred conformation of
 - a. bromocyclohexane
 - c. cis-1-ethyl-3-methylcyclohexane
- b. trans-1,4-dimethylcyclohexane
- d. 1,1-dichlorocyclohexane

From the dichlorination of propane, four isomeric products with the formula $C_3H_6Cl_2$ were isolated and designated A, B, C, and D. Each was separated and further chlorinated to give one or more trichloropropanes, $C_3H_5Cl_3$. A and B gave three trichloro compounds, C gave one, and D gave two. Deduce the structures of C and D. One of the products from A was identical to the product from C. Deduce structures for A and B. (Hint: Start by drawing the structures of all four dichlorinated propane isomers.)

B -c-c-c-c 3

A -c-c-c-c 3

C -c-c-c 1

n c1-c-c-c-c1

C3 Hb Clz CH3CH2CH3 + Cl2 C3 H8 = elleane and c1 has I bend like H, so no pts cl-c-c-e, d-c-c-e, cl-e-c-e el-e-e-e1, el-e-e-e1 01-6-6-6-01

* (CI) = NIN CI

			·	
	·			