Chapter 9

Day 8

Solve Quadratic Equations by Graphing

Solutions Zeros X-interapts roots

Ex: Graph y = -(x+1)(x-5)

A **quadratic equation** is an equation that can be written in the **standard** form $ax^2 + bx + c = 0$ where $a \ne 0$.

Solve $x^2 - 2x = 3$ by graphing.

Find the zeros of
$$f(x) = x^2 + 6x - 7$$
.

Approximate the zeros of $f(x) = x^2 + 4x + 1$ to the nearest tenth.

INTERPRET	x	-3.9	-3.8	-3.7	-3.6	3. 8 −3.5	-3.4	-3.3	-3.2	-3.1
The function value that	f(x)	0.61	0.24	-0.11	-0.44	-0.75	-1.04	-1.31	-1.56	-1.79
s closest to 0 indicates		+		5						
the x-value that best	x	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1
approximates a zero of the function.	f(x)	-1.79	-1.56	-1.31	-1.04	-0.75	-0.44	-0.11	0.24	0.61

SPORTS An athlete throws a shot put with an initial vertical velocity of 40 lest per second as shown.

a. Write an equation that models the height h (in feet) of the shot put as a function of the time t (in seconds) after it is thrown.

b. Use the equation to find the time that the shot put is in the air.

Solution

 Use the initial vertical velocity and the release height to write a vertical motion model.

$$h = -16t^2 + vt + s$$

Vertical motion model

h=-16t2+Vt+S.
Initial
velocity height
initial
Starting