Ch 7:

Electromagnetic radiation - all energy of wavelike behavior

人 = wavelength (meters)

1 - N

**√** = frequency (cycle/sec, sec⁻¹, Hz)





Practice with energy and wavelength equations:

Ex: The blue color in fireworks is from CuCl being heated to 1200 C. Light at a wavelength of 450 nm is then emitted. What increment of energy (the quantum) is emitted at this wavelength?

#### Photoelectric effect:

Energy is a stream of particles called photons

- 1) No electrons are emitted if minimum threshold energy is not enough  $(V_{light} < V_0)$
- 2) If enough energy, e- will be emitted  $(V_{light} > V_0)$

E = h0

Planck's 6.626×10<sup>-34</sup>J·s/photon

e-packet openosy

\* E = h0

\* C = 
$$\lambda V$$

E =  $\frac{hc}{\lambda}$ 

Math with Einstein's work and photoelectric equation:

E = mc<sup>2</sup> ----> m = E/c<sup>2</sup>  
m = h 
$$\frac{h}{\lambda v}$$
 ---->  $\frac{h}{mv}$   
v = velocity m = mass

Ex: Calculate the wavelength for an e- (mass =  $9.11 \times 10^{-31} \text{ kg}$ ) at a speed of  $1.0 \times 10^7 \text{ m/s}$  and a ball with a mass of 0.10 kg traveling at 35 m/s

# Light and electrons:

What is the difference between continuous spectrum and line emission spectrum?

What is the difference between excited light and reflected light?



#### **Bohr Model**

- 1) Assigned energy levels n=1 to n=7 around nucleus
- 2) Derived equation

E = -2.178 x 10<sup>-18</sup> J 
$$\left(\frac{Z^2}{n^2}\right)$$
 Z = nuclear charge n = integer

3) Bohrs equation can calculate the energy of an e- based on its orbits (or change in energy based on its change in orbits)

Can derive Bohrs equation to an equation for Change of energy:

Ex: Determine the Change in energy when an electron in hydrogen atom falls back to ground state from being in n=6. Determine the wavelength of this light.

Some math practice with our new equations:

- 1) Initiating most reactions involving chlorine gas involves breaking the CI CI bond, which has a bond energy of 242-kJ/mol.
  - a) Calculate the amount of energy, in joules, needed to break a single CI CI bond.
  - b) Calculate the longest wavelength of light, in nanometers, that can supply the energy per photon necessary to break the CI CI bond.

- 2) The bond energy of fluorine is 159 kJ/mol
  - a) Determine the energy, in J, of a photon of light needed to break a F-F bond.
  - b) Determine the frequency of this photon, in s<sup>-1</sup>.
  - c) Determine the wavelength of this photon in nanometers.
  - d) What is the wavelength of a photon resulting from the transition n = 6 to n = 1?

- 3) Hydrogen atoms absorb energy so that the electrons are excited to the energy level n = 7. Electrons then undergo these transitions (1) n = 7 to n = 1; (2) n = 7 to n = 2; (3) n = 2 to n = 1. Which of these transitions will produce the photon with:
  - a) the smallest energy
  - b) the highest frequency
  - c) the shortest wavelength

# Atomic models





Whose Model?

# History of the Atom Timeline



#### **Quantum model Theory:**

**Heisenberg Uncertainty principle -** Cannot determine velocity and location of e- simultaneously

Aufbau Principle - e- fill orbitals in lowest to highest energy

**Pauli Exclusion Principle -** an e- cannot have all 4 quantum #s the same (ie.: They can be in same n= level, same sublevel, same orbital but will never have the same spin also)

**Hunds Rule -** each orbital in a sublevel gets 1 e- before any orbital in THAT sublevel gets 2 e-





#### **Quantum Number Summary:**

- 1) Principal n energy shells(level) size n = 1, 2, 3, 4
- 2) Angular
  momentum | sublevels | shape | l = 0 to (n-1)
- 3) Magnetic  $m_l$  orbitals orientation  $m_l = -l$  to +l
- 4) Spin  $m_s = +1/2, -1/2$

2n<sup>2</sup> = maximum number of electrons in a shell

 $n^2$  = orbitals in a shell

2I + 1 = number of orientations (orbitals) in a sublevel





| <u>n</u>     | <u> </u>             | <u>m</u> <sub>l</sub> |                        |
|--------------|----------------------|-----------------------|------------------------|
| shell number | sublevel designation | # of orbitals         | orbital designation    |
| 1            | s = 0                | 1                     | 0                      |
| 2            | s = 0                | 1                     | 0                      |
|              | p = 1                | 3                     | -1, 0, 1               |
| 3            | s = 0                | 1                     | 0                      |
|              | p = 1                | 3                     | -1, 0, 1               |
|              | d = 2                | 5                     | -2, -1, 0, 1, 2        |
| 4            | s = 0                | 1                     | 0                      |
|              | p = 1                | 3                     | -1, 0, 1               |
|              | d = 2                | 5                     | -2, -1, 0 1, 2         |
|              | f = 3                | 7                     | -3, -2, -1, 0, 1, 2, 3 |

3d 
$$-2 - 7 \ \overline{0} \ \overline{1} \ \overline{2}$$
  $(3,2,-2, ) (3,2,-1, ) (3,2,0, ) (3,2,1, ) (3,2,2, )$  4s 
$$\overline{0}$$
  $(4,0,0, )$  
$$-7 \ \overline{0} \ \overline{1}$$
  $(3,1,-1, ) (3,1,0, ) (3,1,1, )$  3s 
$$\overline{0}$$
  $(3,0,0)$  
$$-7 \ \overline{0} \ \overline{1}$$
  $(2,1,-1, ) (2,1,0, ) (2.1.1, )$  2s 
$$\overline{0}$$
  $(2,0,0, )$  
$$\overline{0}$$
  $(1.0,0, )$ 

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p

Writing electron configurations, orbital notations, and noble gas notations:

- 1) Fill in order of aufbau principle
- 2) Follow the periodic table (like reading lines of writing in a book)
- 3) Remember the "exceptions" of the transition metals

Cr Cu Mo Ag

4) Recall:

Each sublevel has orbitals, each orbital can hold 2 e-

s = \_ p = \_\_\_ d = \_\_\_\_ f = \_\_\_\_

- 5) If writing a notation for an ion adjust e- appropriately
- 6) **Lanthanide series -** occurs after lanthanum, fills the 4f **Actinide series -** occurs after actinium, fills the 5f

#### **Quantum # Practice**:

- 1) Give the electron configuration for tin.
- 2) What is the number of outer shell electrons in tin?
- 3) Give the complete electron configuration of silver.
- 4) Give the noble gas configuration of cadmium
- 5) How many outer shell electrons does cadmium have?

- 6) Give the set of quantum numbers for the 25th electron in manganese.
- 7) Give the set of quantum number for the last electron of silicon.
- 8) Give the number of electrons in Pd (palladium) that have n 1.
- 9) Give the number of electrons in Co (cobalt) that have n=3, m=-1/2.

- 10) Give the electron configuration for  $Zn^{+2}$ .
- 11) Give the electron configuration for S.
- 12) How many electrons in Sb has the quantum numbers p=0 and p=1/2?
- 13) Give the abbreviated electron configuration for the Pt.

14) Give the set of quantum numbers for the outer shell electrons of arsenic

- 15) How many electrons in titanium has I = 2 and ⋒= 2?
- 16) How many electrons in nickel has m = -1/2?
- 17) How many electrons in bromine has n = 2 and l = 2?

- 18) Write the abbreviate electron configuration for the following ions:
  - A) Cu +2
  - B) Ca +2
  - C) Mn +2
  - D) Zn +2

**Periodic Trends:** 

Down a group Across a period (L  $\rightarrow$  R)

1) **Atomic Size** Increase Decrease

Why? Add Shells as In same sublevel

period # increases proton # increase, but

energy level to outer e-

stays same

Comparative sizes of ions:

Cation vs Atom Ex: Na vs Na+

Why? Proton vs e- count and loss of n level

Anion vs Atom Ex: Cl vs Cl-

Why? Electron Repulsion

Isoelectronic - have the same number of total electrons

Ex: Place the following isoelectronic ions in order of increasing radius (size)

S-2 P-3 K+

#### 2) Ionization energy (IE)

The energy needed to remove an electron from a gaseous particle

Ex: 
$$Mg_{(g)} + IE_1 ---> Mg^{+1} + e$$
-  $IE_2 > IE_1$   $Mg^{+}_{(g)} + IE_2 ----> Mg^{+2}_{(g)} + e$ -  $IE_3 >>> IE_2 > IE_1$   $Mg^{+2}_{(g)} + IE_3 ----> Mg^{+3}_{(g)} + e$ -

What is the size comparison of these 3 resultant particles?

| Trend of IE | Down Group | Across Period (L> R) |
|-------------|------------|----------------------|
|             | Decrease   | Increase             |

Ex: Which atom would have the greater ionization energy?

As or Se?

Ex: Consider atoms with the electron configurations of

Which has the largest 1st ionization energy and which has the smallest 2nd ionization energy?

Ex: Consider the IE of aluminum and its ions. Explain the large jump between  $IE_3$  and  $IE_4$ 

$$AI_{(g)}$$
 --->  $AI^{+1}_{(g)}$  + 1e-  $IE = 580 \text{ kJ/mol}$   $AI^{+1}_{(g)}$  --->  $AI^{+2}_{(g)}$  + 1e-  $IE = 1815 \text{ kJ/mol}$   $AI^{+2}_{(g)}$  --->  $AI^{+3}_{(g)}$  + 1e-  $IE = 2740 \text{ kJ/mol}$   $AI^{+3}_{(g)}$  --->  $AI^{+4}_{(g)}$  + 1e-  $IE = 11,600 \text{J/mol}$ 

#### 3) Electron Affinity

- The energy <u>change</u> that occurs when an electron is added to a particle

Ex: 
$$CI(g)$$
 + e- --->  $CI$ - +  $EA$  (exothermic)

| Trends   | Down a Group              | Across a period (L> R)     |
|----------|---------------------------|----------------------------|
| Electron |                           |                            |
| Affinity | IE becomes more           | Increase in (-) exothermic |
|          | (+), less likely to occur | value                      |

Ex: For the following elements, pick the atom with the

- a) More favorable (exothermic) electron affinity
- b) Higher IE
- c.) Larger size

4) **Electronegativity -** strength of attraction of an atom toward another atom's e-

Trend Down a group Across a period (L ---> R)

Decreases Increases

Ex: Place the following in order of increasing electronegativity

Si O Te Cl

#### Trends of Groups:

- 1) Most groups behave very similarly valence e- count
- 2) Group 1:
  - a) Most chemically reactive metals
  - b) H is not an alkali, it is here b/c it has 1 valence e-
  - c) Trends of group 1

    Density increase (going down group)

    Decrease in MP/BP (going down a group)
  - d) All group 1 metals oxidize readily, so they are good Reducing Agents

e) Group 1 also reacts with WATER vigorouslyLi > K > Na (Notice different strength of rxn with water)

# Arrange in increasing electronegativity:

- 1) S, F, Se, O
- 2) O, Na, N, Rb, F, Mg
- 3) As, F, P, Sb, O

# Choose the one with the highest IE:

- 1) Na, P, Cl, Al
- 2) Na, K, Rb, Li, Cs
- 3) N, Cl, O, C, F, Br
- 4) C, F, N, O
- 5) Ca, Mg, Be, Sr, Ba

# Explain the following trend:

order of increasing ionization energy:  $Si \le S \le P$ 

# Arrange in Increasing size:

- 1) Cs, Mg, K, Na, Rb
- 2) F, O, Ne, S, As
- 3) P, F, N, O, As

# Give which is the smallest:

- 1) Br or Br
- 2) K or K<sup>+</sup>
- 3) S-2, Cl-, Br-
- 4) Na, Na $^{\scriptscriptstyle +}$  , Mg, Mg $^{\scriptscriptstyle +2}$  , Ca, Ca $^{\scriptscriptstyle +2}$

#### **ARRANGE IN INCREASING SIZE:**

- A) Cs, Mg, K, Na, Rb
- B) F, O, Ne, S, As
- C) P, F, N, O, As

# CHOOSE THE ONE WITH THE HIGHEST IONIZATION ENERGY:

- A) Na, P, Cl, Al
- B) Na, K, Rb, Li, Cs
- C) N, Cl, O, C, F, Br
- D) C, F, N, O
- E) Ca, Mg, Be, Sr, Ba

# ARRANGE IN INCREASING ELECTRONEGATIVITY:

- A) S, F, Se, O
- B) O, Na, N, Rb, F, Mg
- C) As, F, P, Sb, O

#### **GIVE WHICH IS THE SMALLEST:**

- A) Cl, Cl
- B) Na, Na<sup>+1</sup> C) S<sup>-2</sup>, Cl<sup>-1</sup>, Br<sup>-1</sup>
- D) Na, Na<sup>+1</sup>, Mg, Mg<sup>+2</sup>, Ca, Ca<sup>+2</sup>