KINETICS: the study of the rates of chemical reactions

https://www.youtube.com/watch?v=OttRV5ykP7A

Kinetics = dating

- (A) Factors that Affect Rates:
 - 1) Concentration of the reactants
 - i) most: increase conc., increase rate
 - 2) Temperature
 - i) increase temp., increase rate
 - ii) rule of thumb: 10° increase doubles the rate
 - 3) Presence of a catalyst
 - i) increases rate
 - ii) can be recovered
 - iii) ex. enzymes
 - 4) Surface area
 - i) increase surface area, increase rate
- (B) Explanations of Change in Rate
 - 1) frequency of collisions
 - 2) sufficient energy
 - 3) proper orientation

Reactions have:

- A) Different Mechanisms steps in which they take place
- B) Reaction Rate Change in concentration of reactants or product per unit of time

- B) Rate:
 - i) The change that occurs in a given interval of time

ii) units:
$$Ms^{-1} = mol^*L^{-1}*s^{-1}$$
 (M = molarity, s = sec)

example:
$$2H_2O_2 \longrightarrow 2H_2O + O_2$$

or

In general: aA + bB --> cC + dD

(C) Expressing Rate:

Average Rate =
$$(\underline{\mathsf{mol}}_{\mathtt{B}} - \underline{\mathsf{mol}}_{\mathtt{B}}) = \underline{\Delta}\,\mathtt{B} = -\underline{\Delta}\,\mathtt{A}$$
• $\underline{\Delta}\,\mathtt{t}$

By convention, we express rates of reactions as positive quantities, so if finding a (-) slope for consumption of a reactant, use a (-) before the rate formula, so rate = (+)

ex. 1:
$$2N_2O_5$$
 --> $4NO_2$ + O_2

Rate of reaction =

Example 2: Compare the reaction rates for the disappearance of reactants and formation of products for the following reaction:

$$4PH_3(g) --> P_4(g) + 6H_2(g)$$

Rate =
$$\Delta [P_4]$$
 = Δt

or

Rate = -
$$\triangle$$
[PH₃] = \triangle t

Two types of rates can be found:

- D) 1) The <u>Average Rate</u> of reaction during the experiment from t = 0 to t = ? is the negative of the slope
 - 2) The *Instantaneous rate* of reaction is the negative slope of the tangent at time *t*.

Calculate:

- A) The rate of NO_2 consumption between t = 0 and t = 50 sec.
- B) The Instantaneous rate of NO_2 consumption at t = 100. sec

Things to Know about rates of others in the reaction:

- A) Look at the balanced equation, rates are related to coefficients
 - same coefficients = same rates
 - different coefficients = rates are * and / like in stoichiometry

Ex: For the above reaction, balance the equation. Then find the rate of NO production at t = 250 sec. Predict the rate of O2 at that same time, then calculate it and compare to your calculations.

Using this graph, how would you find the rate for the t = 100 to t = 400 sec?

- E) In the reaction: A + 2B --> C + 3D, the rate of disappearance of B is $6.2 \times 10^{-4} \text{ Ms}^{-1}$
- a) What is the rate of disappearance of A?
- b) What is the rate of the formation of D?
- c) What is the rate of formation of C?

Things to know about rate laws:

- A) Rate laws are found through experiment and analysis of its data
- B) Rate laws can be found for reactants or products (our book does reactants)
- C) Rate law = expression that shows how the rate depends on the concentration of reactants

$$2NO_2 ---> 2NO + O_2$$

Rate = k [NO_2]ⁿ

- D) Why do we want to know a rate law?
 - i) helps us work backward to infer rxn intermediate steps
 - ii) determine the "fast" step of reaction
 - iii) helps us determine how to speed the "slow step"

$$2I - + S_2O_8^{-2} --> I_2 + 2SO_4^{-2}$$

[-]	$[S_2O_8^{-2}]$	Initial rate(mol/L*s ()
0.080	0.040	12.5 x 10 ⁻⁶
0.040	0.040	6.25 x 10 ⁻⁶
0.080	0.020	6.25 x 10 ⁻⁶
0.032	0.040	5.00 x 10 ⁻⁶
0.060	0.030	7.00 x 10 ⁻⁶

Determine the rate law, value of the rate constant (k), and the order of the reaction per each reactant.

For the reaction 2NO + O_2 --> 2N O_2

Determine the rate law, the rate constant and its proper units

[NO]	$[O_2]$	Initial Rate (NO ₂):M/s
1.00×10^{18}	1.00 x 10 ¹⁸	2.00 x 10 16
3.00×10^{18}	1.00 x 10 ¹⁸	1.80 x 10 ¹⁷
2.50 x 10 ¹⁸	2.50 x 10 18	3.13 x 10 ¹⁷

$$5Br(aq) + BrO_3(aq) + 6H(aq) --> 3Br_2(l) + 3H_2O(l)$$

In the study of the kinetics of the reaction represented above, the following data were obtained at 298K.

AP QUEST	TION:			
EXPT	Initial	Initial	Initial	Rate of Disappearance
	[Br-]	$\underbrace{\begin{bmatrix}BrO_3 \bar{}\\\\ \underline{mol/L}\end{bmatrix}}_{}$	$\underbrace{\begin{bmatrix} H^+ \end{bmatrix}}_{\text{mol/L}}$	$ of BrO_3 - Martin $
_1	0.100	0.100	0.100	8.0 x 10 ⁻⁴
2	0.100	0.200	0.100	1.6 x 10 ⁻³
3	0.200	0.200	0.100	3.2 x 10 ⁻³
4	0.100	0.100	0.200	3.2 x 10 ⁻³

- a) From the data given above, determine the order of the reaction for each reactant listed below. Show your reasoning.
 - i) Br- ii) BrO₃ iii) H⁺
- b) Write the rate law for the overall reaction
- c) Determine the overall reaction order
- d) Determine the value of the specific rate constant for the reaction at 298K. Include the correct units.
- e) Calculate the value of the standard cell potential, E^o, for the reaction using the information in the table below.

$$\frac{\text{HALF-REACTION}}{\text{Br}_2(l) + 2e^- --> 2\text{Br}(aq)} \qquad \frac{\text{E}^{\circ}(V)}{+1.065}$$

$$\text{BrO}_3^{-}(aq) + 6\text{H}^{+}(aq) + 5\text{e}^{-} --> 1/2\text{Br}_2(l) + 3\text{H}_2\text{O}(l) + 1.52}$$

f) Determine the total number of electrons transferred in the overall reaction.

Using the integrated rate law to determine reaction order

Rate =
$$-\delta[A]$$

Rate =
$$k [A]^x$$

then:
$$k[A]^x = -\underline{A}[A]$$

Zero Order Rxn

a) if
$$x = 0$$

b)
$$[A] = -kt + [A]_0$$
 initial conc. $t = 0$

- c) if I plot [A] vs t and get a straight line, it is order = 0
- d) slope = -k

1st Order Rxn

a) if
$$x = 1$$

b)
$$ln[A] = -kt + ln [A]_0$$

 $(ln[A] - ln[A-]_0) = -kt$

- c) If I plot In [A] vs t and get a straight line... it is order = 1
- d) slope = -k

2nd Order Rxn

a) if
$$x = 2$$

b)
$$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$$

- c) If I plot 1
 - [A] vs t and get a (+) straight line.... it is order = 2
- d) slope = k

The gas phase decomposition of NO₂,

$$NO_2(g)$$
 --> $NO(g)$ + $O_2(g)$,

is studied at 383°C, giving the following data:

Time(s)	$[NO_2]$ (M)
0.0	0.100
5.0	0.017
10.0	0.0090
15.0	0.0062
20.0	0.0047

- (A) Determine whether the reaction is first or second order with respect to the concentration of NO $_{\rm 2}$
- (B) Determine the value of the rate constant.

Order	Equation	Plot	Slope	Units (k)
0	$[A] = -kt + [A]_0$	[A] vs t	-k	mol/L*s; M*s-1
1	$ln[A] = -kt + ln [A]_0$	In[A] vs t	-k	S-1
2	$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$	1 vs t [A]	k	L/mol*s; M-1*s-1

EX 1:

We carry out the reaction $A \longrightarrow B + C$ at a particular temperature. What is the order of the reaction, the rate law expression , and the value of k at this temperature.

TIME(min 0.00 2.00 4.00 6.00	<u>1)</u>	[A] (mol 2.000 1.107 0.612 0.338	<u>/L)</u>
8.00 10.00		0.187 0.103	
TIME(min) 0.00 2.00 4.00 6.00 8.00 10.00	[A] 2.000 1.107 0.612 0.338 0.187 0.103	ln[A] 0.693 0.102 -0.491 -1.085 -1.677 -2.273	1/[A] 0.5000 0.9033 1.63 2.95 5.35 9.71

ex. 2: It is found that 54 min. is required for the concentration of substance A to decrease from 0.75M to 0.20M. What is the rate constant for this first order decomposition? $A \longrightarrow B + C$

ex. 3: The rate constant for the decomposition of nitrogen dioxide

 $2NO_2 \longrightarrow 2NO + O_2$

is $1.70~M^{-1}*~min^{-1}$. Find the time, in seconds, needed to decrease 2.00-mol/L of NO_2 to 1.25-mol/L. What is the concentration of NO and O_2 after that time?

When doing percentage problems:

ex. Calculate the value of the rate constant if after 40 min, 35% of the reaction is complete. The $[A]_0 = 0.50M$

A) If 1st Order: either way will give the correct answer (use % or actual conc.)

1)
$$\ln(65) = -k(40) + \ln(100)$$
 or 2) $\ln(0.325) = -k(40) + \ln(0.50)$
because $\ln 65 - \ln 100 = \ln .325 - \ln .5$

B) If 2nd Order: ONLY way is to use the actual concentrations

1)
$$1/.325 = k(40) + 1/.50$$

because 1/65 - 1/100 and 1/.325 - 1/.5 are not equal

Ch	12	SB	king	tics.	noto	hoc	١L
OII	14	UП	NIIIE	ะแบร.	HULE	DUL	JN.

December 28, 2014

ex.3: How long will it take for 75% of the concentration of A to decompose if k is $50 \, s^{-1}$?

3) Answer the following questions related to the kinetics of chemical reactions:

$$I-(aq) + CIO-(aq) --OH--> IO-(aq) + CI-(aq)$$

Iodide ion, I, is oxidized to hypoiodite ion, IQ by hypochlorite, ClO, in basic solution according to the equation above. Three initial-rate experiments were conducted; the results are shown in the following table.

<u>EXPT</u>	[<u>I</u> -]	[ClO-]	INIT RATE of Form. [IQ
FORM. IO			
1	0.017M	0.015M	0.156M/s
2	0.052M	0.015M	0.476M/s
3	0.016M	0.061M	0.596M/s

- A) Determine the order of the reaction with respect to each reactant listed below.
 - i) I-(aq)

Show your work

- ii) ClO-(aq)
- B) For the reaction,
 - i) Write the rate law that is consistent with the calculations in part (A).
 - ii) Calculate the value of the specific rate constant, k, and specify units.

The catalyzed decomposition of hydrogen peroxide,

$$2H_2O_2(aq) \longrightarrow 2H_2O(1) + O_2(g)$$

The kinetics of the decomposition reaction were studied and the results analyzedSome of the experimental data are shown in the table below. Determine the order of the reaction.

$[H_2O_2]$	Time(min)
1.00M	0.0
0.78M	5.0
0.61	10.0

- C) During the analysis of the data, the graph was produced:

 i) Label the vertical axis of the graph that would give a straight line and draw line
 - ii) What is the rate constant, K, and its proper units for the decomposition of $H_2O_2(aq)$?

HALF-LIFE

A) Half-life $(t_{1/2})$ is time for reactant to reach 1/2 its original conc.

1st order:

$$t_{1/2} = \frac{0.693}{k}$$

2nd order: $t_{1/2} = \frac{1}{k[A]_0}$

* for a 1st order reaction t_{1/2} does not depend on concentration

Comparison of $t_{1/2}$ for 1st order and 2nd order rxns 1st order 2nd order

- $t_{1/2}$ depends on k
- constant time required
 to reduce the reactant
 rxn
- t_{1/2} depends on k and [A]
- each successive 1/2 life is approximate double thhe $t_{\mbox{\scriptsize 1/2}}$ of the preceeding by 1/2

- EX. 1: A certain first order reaction has a half-life of 20.0-min.
 - A) Calculate the rate constant for this reaction.
 - B) How much time is required for this reaction to be 75% complete?

2) A certain reaction has the following general form:

At a particular temperature and $[A]_o = 2.00 \times 10^{-2} M$, concentration time data were collected for this reaction and a plot of ln[A] versus time resulted in a straight line with a slope value of $-2.97 \times 10^{-2} min^{-1}$.

- A) Determine the rate law
- B) Calculate the half-life
- C) How much time is required for the concentration of A to decrease to 2.50 x 10³M?

3) A certain reaction has the following general form:

At a particular temperature and [A]o = $2.80 \times 10^{-2} \,\text{M}$, concentration time data were collected for this reaction and a plot of 1/[A] versus time resulted in a straight line with a slope value of $3.60 \times 10^{-2} \,\text{L}_{\odot} \,\text{mol}_{\odot}$.

- A) Determine the rate law
- B) Calculate the half-life
- C) How much time is required for the concentration of A to decrease to 7.00 x 10⁻⁴ M?

Collision Theory:

In order for a reaction to occur, reactant molecules must collide with an energy greater than some minimum value (activation energy, E_a) and with proper orientation.

```
k = pfz \ where \qquad k = rate \ constant p = fraction \ of \ collisions \ with \ proper \ orientation f = fraction \ of \ collisions \ having \ energy \ greater than the minimum z = collision \ frequency \ - proportional \ to \ speed - proportional \ to \ temperature
```

Increase in temperature

- 1) inc. collision frequency
- 2) inc. number of molecules with minimum energy

Things to remember with collision theory:

- A) Collision has too little energy = no rxn
- B) Collision not correct orientation = no rxn
- C) How can we increase the chances of having enough collisions with proper orientation and enough energy?
- D) Formula:

of collisions with needed E_a = (Total # collisions) $e^{Ea/RT}$

Fraction of collisions with enough energy

- E) E_a = activation energy minimum energy required to break reactant bonds
- F) At the point E_a is hit, transition state of molecules occurs

Arrhenius Equation:

$$k = Ae^{-E}$$
 where $A = frequency factor$ $(A=pz)$

$$ln(k) = -E_a/R(1/T) + ln(A)$$

$$ln(k_2/k_1) = - E_a/R(1/T_{K2} - 1/T_{K1})$$

 $E_a = usually in kJ/mol$

R = 8.314 J/mol-K

Ex 1: The reaction:

$$2N_2O_{5(g)}$$
 ---> $4NO_{2(g)}$ + $O_{2(g)}$

Was studied at several temperatures and the following k values found:

$k (s^{-1})$ $T (C$

$$2.9 \times 10^{-3}$$
 60 Calculate the E_a value for this reaction.

Ex 2: The gas-phase reaction between methane and diatomic sulfur is given:

$$CH_{4(g)}$$
 + $2S_{2(g)}$ ---> $CS_{2(g)}$ + $2H_2S_{(g)}$

At 550 C the rate constant of this reaction is 1.1 L/mol*s and at 625 C the rate constant is 6.4 L/mol*s. Using these values, calculate E_a for this reaction.

REACTION MECHANISM:

The set of elementary reactions where overall effect is given by the net chemical equation.

- A) Mechanisms are PROBABLE AND LIKELY, but experiments must be done to support or disprove proposed mechanism
- B) Mechanism must agree with the rate law
- C) Sum of the elementary steps (each individual rxn) must = the overall balanced equation
- D) K_1 and K_2 ... refer to the rates of each elementary step
- E) Reference to molecularity (rate based on reactants) unimolecular = (1) reactant rate = k [A] bimolecular = (2) reactants rate = $k [A]^2$ rate = k [A][B] termolecular = (3) reactants rate = $k [A]^2[B]$ rate = k [A][B][C]
- F) Rxns will have 1 slow step and the rest = fast steps (slow step = rate determining step)
- 1) Cl₂ <=> 2Cl Cl + CHCl₃ --> HCl + CCl₃ Cl + CCl₃ --> CCl₄

2)
$$O_3 + NO_2 --> O_2 + NO_3$$
 (slow) $NO_3 + NO_2 --> N_2O_5$ (fast)

3)
$$H_2 O_2 + Br$$
 --> $BrO_1 + H_2 O_2$
 $H_2 O_2 + BrO_2 --> Br_1 + H_2 O_2 + O_2$

4) For
$$NO_2$$
 + CO --> CO_2 + NO and $Rate = k[NO_2]^2$

Proposed:
$$2NO_2 \longrightarrow NO_3 + NO$$
 (slow) $NO_3 + CO \longrightarrow NO_2 + CO_2$ (fast)

5) For
$$H_2 + I_2 \longrightarrow 2HI$$

Proposed: $I_2 \stackrel{\text{K.s.}}{\rightleftharpoons} 2I \text{ (fast)}$
 $I + I + H_2 \stackrel{\text{K.s.}}{\rightleftharpoons} 2HI \text{ (slow)}$

6) $2 O_3 \longrightarrow 3O_2$ and experimental rate = $k[O_3]^2/[O_2]$

Proposed:
$$O_3 \iff O_2 + O \text{ (fast)}$$

$$O + O_3 \longrightarrow 2O_2$$
 (slow)

Catalysts:

- 1) Provides another pathway for the reaction mechanism to proceed, new pathway has a lower E_a (so more collisions have minimum energy needed)
 - ***Reactants and products still have same amount of energy and enthalpy (**A**H) change is the same
- 2) Is not used in the reaction, is still present in same amount at end
- 3) Two classes of catalysts:
 - A) homogeneous same phases as reactants
 - B) heterogeneous different phase than reactants, usually solid
- 4) Examples:

Pt, Ni, Pd used in hydrogentation of oils to make

margarine

VO₂ used to catalyze SO₂ ----> SO₃

Catalytic converter contains transition metals and noble metals

such as Pt and Pd, converts bad emissions

5) Enzymes - act as an catalysts in the bodies of animals and plants

1) ENERGY PATHWAY:

2) NUMBER OF MOLECULESVS KINETIC ENERGY (change in temperature)

3) NUMBER OF MOLECULES vs KINETIC ENERGY (ACTIVATION ENERGY)

4) CATALYST vs NO CATALYST (ACTIVATION ENERGY)

5) ORDERS OF REACTANTS:

6) RATE CONSTANT vs TEMPERATURE

The following mechanism has been proposed for the gas-phase reaction of chloroform, CHCl₃, and chlorine.

Step 1:
$$Cl_2(g)$$
 $<\stackrel{\textbf{K}_1}{\rightleftharpoons}$ $2Cl(g)$ fast
Step 2: $Cl(g)$ + $CHCl_3(g)$ $\stackrel{\textbf{K}_2}{\leftrightharpoons}$ $+$ $HCl(g)$ + $CCl_3(g)$ slow
Step 3: $Cl(g)$ + $CCl_3(g)$ $\stackrel{\textbf{K}_3}{\leftrightharpoons}$ $+$ $CCl_4(g)$ fast

- a) What is the overall reaction?
- b) What is (are) the intermediate(s)?
- c) What is the molecularity of each of the elementary steps?
- d) What is the rate determining step?
- e) What is the rate law predicted by this mechanism?

Extra Rate Law practice

Determine the rate law expression and the value of the rate constant for the reaction:

EXPT	INITIAL [A]	INITIAL [B]	INITIAL [C]	INITIAL RATE OF FORMATION OF E
1	0.20M	0.20M	0.20M	2.4 x 10-6 M * min-1
2	0.40M	0.30M	0.20M	9.6 x 10 ⁻⁶ M * min ⁻¹
3	0.20M	0.30M	0.20M	2.4 x 10 ⁻⁶ M * min ⁻¹
4	0.20M	0.40M	0.60M	7.2 x 10-6 M * min-1

Hydroxide ion is involved in the mechanism but is not consumed in this reaction in aqueous solution. Determine the rate law, the rate constant and its proper units.

$OCI^{-1} + I^{-1} \xrightarrow{OH-1} OI^{-1} + CI^{-1}$			
[OCI -1]	[-1]	[OH-1]	Rate of Formation OI -1, M·s-1
0.0040	0.0020	1.00	4.8 x 10 ⁻⁴
0.0020	0.0040	1.00	4.8 x 10 ⁻⁴
0.0020	0.0020	1.00	2.4 x 10 ⁻⁴
0.0020	0.0020	0.50	4.8 x 10 ⁻⁴
0.0020	0.0020	0.25	9.6 x 10 ⁻⁴