Exponential Growth and Decay

What you'll learn about

- · Separable Differential Equations
- · Law of Exponential Change
- Continuously Compounded Interest
- Radioactivity
- Modeling Growth with Other Bases
- Newton's Law of Cooling

... and why

Understanding the differential equation dy/dx = ky gives us new insight into exponential growth and decay.

Separable Differential Equations

DEFINITION Separable Differential Equation

A differential equation of the form dy/dx = f(y)g(x) is called **separable.** We **separate the variables** by writing it in the form

$$\int \frac{1}{f(y)} \, dy = g(x) \, dx.$$

The solution is found by antidifferentiating each side with respect to its thusly isolated variable.

Procedure:

- 1) Separate the variables (including the dx, dy, etc.)
- 2) Integrate both sides
- 3) Find the constants (if a particular solution)
- 4) Solve for y

EXAMPLE 1 Solving by Separation of Variables

Solve for y if $dy/dx = (xy)^2$ and y = 1 when x = 1.

$$\frac{dy}{dx} = x^{2} \lambda^{2}$$

$$-\frac{1}{4} = \frac{1}{3}x^{3} + C$$

$$-\frac{1}{4} = \frac{1}{3}x^{3} - \frac{1}{3}$$

$$-\frac{1}{4} = \frac{1}{3}x^{3} - \frac{1}{3$$

Example 1: Find the solution for the following differential equation when y(1) = 2.

$$\frac{dy}{dx} = \frac{x}{y} \tag{12}$$

$$y dy = x dx$$

$$\frac{1}{2}y^{2} = \frac{1}{2}x^{2} + C$$

$$\frac{1}{2}y^{2} = \frac{1}{2}x^{2} + 2C$$

$$\frac{1}{2}y^{2} = \frac{1}{2}x^{2} + \frac{1}{2}x^{2$$

A Culture of Bacteria...

Exponential Growth

One thousand bacteria are started in a certain culture and the number of bacteria B, increase at a rate porportional to the number present. Set up and solve the differential equation

number present. Set up and solve the differential equation which represents this situation when
$$B = 3000$$
 when time $t = 8$.

(C₁ 1 (C₂) (R₁ 3 0 coo)

$$\frac{dB}{dt} = BK$$
(dB = K dt

$$\frac{dB}{B} = K dt$$
(B| = e^{kt} + (

B = t e^{kt} - e^{kt}

B = A e kt

1000 = A e^{kt01}

3000 = A e^{kt01}

Assign:

page 357/ Quick Review 1 to 10

1 to 13 odd