
  



  

Brook Taylor
1685 - 1731 

9.2: Taylor Series

Brook Taylor was an 
accomplished musician and 
painter.  He did research in a 
variety of areas, but is most 
famous for his development of 
ideas regarding infinite series.

Greg Kelly, Hanford High School, Richland, Washington



  

Suppose we wanted to find a fourth degree polynomial of 
the form:
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approximation.
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If we plot both functions, we see 
that near zero the functions match 
very well!





  

This pattern occurs no matter what the original function was!

Our polynomial: 2 3 41 2 6
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Maclaurin Series:

(generated by f at            )0x 
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If we want to center the series (and it’s graph) at some 
point other than zero, we get the Taylor Series:
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example: cosy x
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The more terms we add, the better our approximation.





  

example:  cos 2y x

Rather than start from scratch, we can use the function 
that we already know:
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When referring to Taylor polynomials, we can talk about 
number of terms, order or degree. 

2 4

cos 1
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x x
x    This is a polynomial in 3 terms.

It is a 4th order Taylor polynomial, because it was 
found using the 4th derivative.

It is also a 4th degree polynomial, because x is raised 
to the 4th power.

The 3rd order polynomial for             is           , but it is 
degree 2.

cos x
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The x3 term drops out when using the third derivative.

This is also the 2nd order polynomial.

A recent AP exam required the student to know the 
difference between order and degree.





  

The TI-89 finds Taylor Polynomials:

taylor (expression, variable, order, [point])
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