### AB/BC Calculus Exam – Review Sheet

### A. Precalculus Type problems

| When you see the words | This is what you think of doing |
|------------------------|---------------------------------|

|    | when you see the words                                                                                                                     | This is what you think of doing |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| A1 | Find the zeros of $f(x)$ .                                                                                                                 |                                 |
| A2 | Find the intersection of $f(x)$ and $g(x)$ .                                                                                               |                                 |
| A3 | Show that $f(x)$ is even.                                                                                                                  |                                 |
| A4 | Show that $f(x)$ is odd.                                                                                                                   |                                 |
| A5 | Find domain of $f(x)$ .                                                                                                                    |                                 |
| A6 | Find vertical asymptotes of $f(x)$ .                                                                                                       |                                 |
| A7 | If continuous function $f(x)$ has $f(a) < k$ and $f(b) > k$ , explain why there must be a value $c$ such that $a < c < b$ and $f(c) = k$ . |                                 |

#### **B.** Limit Problems

|    | When you see the words                                        | This is what you think of doing |
|----|---------------------------------------------------------------|---------------------------------|
| B1 | Find $\lim_{x\to a} f(x)$ .                                   |                                 |
|    |                                                               |                                 |
| B2 | Find $\lim_{x \to a} f(x)$ where $f(x)$ is a                  |                                 |
|    | piecewise function.                                           |                                 |
| В3 | Show that $f(x)$ is continuous.                               |                                 |
| B4 | Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ . |                                 |
| B5 | Find horizontal asymptotes of $f(x)$ .                        |                                 |

|          | when you see the words                                                   | This is what you think of doing |
|----------|--------------------------------------------------------------------------|---------------------------------|
| B6<br>BC | $\lim_{x \to 0} \frac{f(x)}{g(x)}$                                       |                                 |
|          | if $\lim_{x \to 0} f(x) = 0$ and $\lim_{x \to 0} g(x) = 0$               |                                 |
| B7<br>BC | Find $\lim_{x\to 0} f(x) \cdot g(x) = 0(\pm \infty)$                     |                                 |
| B8<br>BC | Find $\lim_{x \to 0} f(x) - g(x) = \infty - \infty$                      |                                 |
| B9<br>BC | Find $\lim_{x\to 0} f(x)^{g(x)} = 1^{\infty}$ or $0^{0}$ or $\infty^{0}$ |                                 |

## C. Derivatives, differentiability, and tangent lines

|    | wnen you see the words                                                                                                                          | I his is what you think of doing |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| C1 | Find the derivative of a function using the derivative definition.                                                                              |                                  |
| C2 | Find the average rate of change of $f$ on $[a, b]$ .                                                                                            |                                  |
| C3 | Find the instantaneous rate of change of $f$ at $x = a$ .                                                                                       |                                  |
| C4 | Given a chart of $x$ and $f(x)$ and selected values of $x$ between $a$ and $b$ , approximate $f'(c)$ where $c$ is a value between $a$ and $b$ . |                                  |
| C5 | Find the equation of the tangent line to $f$ at $(x_1, y_1)$ .                                                                                  |                                  |
| C6 | Find the equation of the normal line to $f$ at $(x_1, y_1)$ .                                                                                   |                                  |
| C7 | Find <i>x</i> -values of horizontal tangents to <i>f</i> .                                                                                      |                                  |
| C8 | Find <i>x</i> -values of vertical tangents to <i>f</i> .                                                                                        |                                  |
| C9 | Approximate the value of $f(x_1 + a)$ if you know the function goes through point $(x_1, y_1)$ .                                                |                                  |

|     |                                         | <u> </u> |
|-----|-----------------------------------------|----------|
| C10 | Find the derivative of $f(g(x))$ .      |          |
|     |                                         |          |
| C11 | The line $y = mx + b$ is tangent to the |          |
|     | graph of $f(x)$ at $(x_1, y_1)$ .       |          |
| C12 | Find the derivative of the inverse to   |          |
|     | f(x) at $x = a$ .                       |          |
| C13 | Given a piecewise function, show it is  |          |
|     | differentiable at $x = a$ where the     |          |
|     | function rule splits.                   |          |

## **D.** Applications of Derivatives

|     | when you see the words                                                                | inis is what you think of doing |
|-----|---------------------------------------------------------------------------------------|---------------------------------|
| D1  | Find critical values of $f(x)$ .                                                      |                                 |
| D2  | Find the interval(s) where $f(x)$ is                                                  |                                 |
|     | increasing/decreasing.                                                                |                                 |
| D3  | Find points of relative extrema of $f(x)$ .                                           |                                 |
| D4  | Find inflection points of $f(x)$ .                                                    |                                 |
| D5  | Find the absolute maximum or minimum of $f(x)$ on $[a, b]$ .                          |                                 |
| D6  | Find range of $f(x)$ on $(-\infty,\infty)$ .                                          |                                 |
| D7  | Find range of $f(x)$ on $[a, b]$                                                      |                                 |
| D8  | Show that Rolle's Theorem holds for $f(x)$ on $[a, b]$ .                              |                                 |
| D9  | Show that the Mean Value Theorem holds for $f(x)$ on $[a, b]$ .                       |                                 |
| D10 | Given a graph of $f'(x)$ , determine intervals where $f(x)$ is increasing/decreasing. |                                 |
|     | 111010401115/40010401115.                                                             |                                 |

| D11 | Determine whether the linear                |  |
|-----|---------------------------------------------|--|
|     | approximation for $f(x_1 + a)$ over-        |  |
|     | estimates or under-estimates $f(x_1 + a)$ . |  |
| D12 | Find intervals where the slope of $f(x)$    |  |
|     | is increasing.                              |  |
| D13 | Find the minimum slope of $f(x)$ on         |  |
|     | ,                                           |  |
|     | [a, b].                                     |  |
|     |                                             |  |

### E. Integral Calculus

|     | When you see the words                                                           | This is what you think of doing |
|-----|----------------------------------------------------------------------------------|---------------------------------|
| E1  | Approximate $\int_{a}^{b} f(x) dx$ using left                                    |                                 |
|     | Riemann sums with <i>n</i> rectangles.                                           |                                 |
| E2  | Approximate $\int_{a}^{b} f(x) dx$ using right                                   |                                 |
|     | Riemann sums with <i>n</i> rectangles.                                           |                                 |
| E3  | Approximate $\int_{a}^{b} f(x) dx$ using midpoint                                |                                 |
|     | Riemann sums.                                                                    |                                 |
| E4  | Approximate $\int_{a}^{b} f(x) dx$ using                                         |                                 |
|     | trapezoidal summation.                                                           |                                 |
| E5  | Find $\int_{b}^{a} f(x) dx$ where $a < b$ .                                      |                                 |
| E6  | Meaning of $\int_{a}^{x} f(t) dt$ .                                              |                                 |
| E7  | Given $\int_a^b f(x) dx$ , find $\int_a^b [f(x) + k] dx$ .                       |                                 |
| E8  | Given the value of $F(a)$ where the antiderivative of $f$ is $F$ , find $F(b)$ . |                                 |
| Е9  | Find $\frac{d}{dx} \int_{a}^{x} f(t) dt$ .                                       |                                 |
| E10 | Find $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt$ .                                    |                                 |

|           |                                    | J 8 |
|-----------|------------------------------------|-----|
| E11<br>BC | Find $\int_{0}^{\infty} f(x) dx$ . |     |
| E12<br>BC | Find $\int f(x) \cdot g(x) dx$     |     |

### F. Applications of Integral Calculus

|           | When you see the words                                                                | This is what you think of doing |
|-----------|---------------------------------------------------------------------------------------|---------------------------------|
| F1        | Find the area under the curve $f(x)$ on                                               |                                 |
|           | the interval $[a, b]$ .                                                               |                                 |
| F2        | Find the area between $f(x)$ and $g(x)$ .                                             |                                 |
| 12        | I ma the area seemeen y (w) and g(w).                                                 |                                 |
|           |                                                                                       |                                 |
| F3        | Find the line $x = c$ that divides the area                                           |                                 |
|           | under $f(x)$ on $[a, b]$ into two equal                                               |                                 |
| E4        | areas.                                                                                |                                 |
| F4        | Find the volume when the area under $f(x)$ is rotated about the <i>x</i> -axis on the |                                 |
|           | interval $[a, b]$ .                                                                   |                                 |
| F5        | Find the volume when the area                                                         |                                 |
|           | between $f(x)$ and $g(x)$ is rotated about                                            |                                 |
|           | the x-axis.                                                                           |                                 |
| F6        | Given a base bounded by                                                               |                                 |
|           | f(x) and $g(x)$ on $[a, b]$ the cross                                                 |                                 |
|           | sections of the solid perpendicular to                                                |                                 |
| E7        | the x-axis are squares. Find the volume.                                              |                                 |
| F7        | Solve the differential equation                                                       |                                 |
|           | $\frac{dy}{dx} = f(x)g(y).$                                                           |                                 |
| F8        | Find the average value of $f(x)$ on                                                   |                                 |
|           | [a,b].                                                                                |                                 |
| F0        | F: 14                                                                                 |                                 |
| F9        | Find the average rate of change of $F'(x)$ on $[t_1,t_2]$ .                           |                                 |
|           | $I (\lambda) \text{ on } [t_1, t_2].$                                                 |                                 |
| F10       | y is increasing proportionally to y.                                                  |                                 |
|           |                                                                                       |                                 |
| F1.1      |                                                                                       |                                 |
| F11       | Given $\frac{dy}{dx}$ , draw a slope field.                                           |                                 |
|           | dx                                                                                    |                                 |
| F12       | $\mathbf{F}$ $\mathbf{f}$ $\mathbf{f}$ $\mathbf{f}$                                   |                                 |
| F12<br>BC | Find $\int \frac{dx}{ax^2 + bx + c}$                                                  |                                 |
|           |                                                                                       |                                 |

|     | when you see the words                              | This is what you think of doing |
|-----|-----------------------------------------------------|---------------------------------|
| F13 | Use Euler's method to approximate                   |                                 |
| BC  | f(1.2) given a formula for                          |                                 |
|     | $\frac{dy}{dx}$ , $(x_0, y_0)$ and $\Delta x = 0.1$ |                                 |
| F14 | Is the Euler's approximation an over-               |                                 |
| BC  | or under-approximation?                             |                                 |
|     |                                                     |                                 |
| F15 | A population <i>P</i> is increasing                 |                                 |
| BC  | logistically.                                       |                                 |
|     |                                                     |                                 |
| F16 | Find the carrying capacity of a                     |                                 |
| BC  | population growing logistically.                    |                                 |
|     |                                                     |                                 |
| F17 | Find the value of <i>P</i> when a population        |                                 |
| BC  | growing logistically is growing the                 |                                 |
|     | fastest.                                            |                                 |
| F18 | Given continuous $f(x)$ , find the arc              |                                 |
| BC  | length on [a, b]                                    |                                 |
|     |                                                     |                                 |

### G. Particle Motion and Rates of Change

| G1 | Given the position function $s(t)$ of a                                                                  |  |
|----|----------------------------------------------------------------------------------------------------------|--|
|    | particle moving along a straight line, find the velocity and acceleration.                               |  |
| G2 | Given the velocity function $v(t)$ and $s(0)$ , find $s(t)$ .                                            |  |
| G3 | Given the acceleration function $a(t)$ of a particle at rest and $s(0)$ , find $s(t)$ .                  |  |
| G4 | Given the velocity function $v(t)$ , determine if a particle is speeding up or slowing down at $t = k$ . |  |
| G5 | Given the position function $s(t)$ , find the average velocity on $[t_1, t_2]$ .                         |  |
| G6 | Given the position function $s(t)$ , find the instantaneous velocity at $t = k$ .                        |  |
| G7 | Given the velocity function $v(t)$ on $[t_1,t_2]$ , find the minimum acceleration of a particle.         |  |
| G8 | Given the velocity function $v(t)$ , find the average velocity on $[t_1, t_2]$ .                         |  |

|     | When you see the words                                               | This is what you think of doing |
|-----|----------------------------------------------------------------------|---------------------------------|
| G9  | Given the velocity function $v(t)$ ,                                 |                                 |
|     | determine the difference of position of                              |                                 |
|     | a particle on $[t_1, t_2]$ .                                         |                                 |
| G10 | Given the velocity function $v(t)$ ,                                 |                                 |
|     | determine the distance a particle travels                            |                                 |
|     | on $\lfloor t_1, t_2 \rfloor$ .                                      |                                 |
| G11 | on $[t_1, t_2]$ .  Calculate $\int_{t_1}^{t_2}  v(t)  dt$ without a  |                                 |
|     | Calculate $\int_{t_i}  v(t)  dt$ without a                           |                                 |
|     | calculator.                                                          |                                 |
| G12 | Given the velocity function $v(t)$ and                               |                                 |
|     | s(0), find the greatest distance of the                              |                                 |
|     | particle from the starting position on                               |                                 |
|     | $[0,t_1]$ .                                                          |                                 |
| G13 | The volume of a solid is changing at                                 |                                 |
|     | the rate of                                                          |                                 |
| C14 | b                                                                    |                                 |
| G14 | The meaning of $\int_{a}^{b} R'(t) dt$ .                             |                                 |
|     | <i>a</i>                                                             |                                 |
| G15 | Given a water tank with g gallons                                    |                                 |
|     | initially, filled at the rate of $F(t)$                              |                                 |
|     | gallons/min and emptied at the rate of                               |                                 |
|     | $E(t)$ gallons/min on $[t_1, t_2]$ a) The                            |                                 |
|     | amount of water in the tank at $t = m$                               |                                 |
|     | minutes. b) the rate the water amount is                             |                                 |
|     | changing at $t = m$ minutes and c) the                               |                                 |
|     | time <i>t</i> when the water in the tank is at a minimum or maximum. |                                 |
|     | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                               |                                 |

# H. Parametric and Polar Equations - BC

|    | when you see the words                                                      | <br>you think of doing |
|----|-----------------------------------------------------------------------------|------------------------|
| H1 | Given $x = f(t), y = g(t)$ , find $\frac{dy}{dx}$ .                         |                        |
| H2 | Given $x = f(t), y = g(t)$ , find $\frac{d^2y}{dx^2}$ .                     |                        |
| НЗ | Given $x = f(t), y = g(t)$ , find arc length on $[t_1, t_2]$ .              |                        |
| H4 | Express a polar equation in the form of $r = f(\theta)$ in parametric form. |                        |
| Н5 | Find the slope of the tangent line to $r = f(\theta)$ .                     |                        |

|    | When you see the Words !!!                                                           | inis is what you think of doing |
|----|--------------------------------------------------------------------------------------|---------------------------------|
| Н6 | Find horizontal tangents to a polar curve $r = f(\theta)$ .                          |                                 |
| H7 | Find vertical tangents to a polar curve $r = f(\theta)$ .                            |                                 |
| Н8 | Find the area bounded by the polar curve $r = f(\theta)$ on $[\theta_1, \theta_2]$ . |                                 |
| Н9 | Find the arc length of the polar curve $r = f(\theta)$ on $[\theta_1, \theta_2]$ .   |                                 |

#### I. Vectors and Vector-valued functions - BC

|    | When you see the words                                                                                                                                      | This is what you think of doing |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| I1 | Find the magnitude of vector $v\langle v_1, v_2 \rangle$                                                                                                    |                                 |
| I2 | Find the dot product: $\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle$                                                                             |                                 |
| I3 | The position vector of a particle moving in the plane is $r(t) = \langle x(t), y(t) \rangle$ . Find a) the velocity vector and b) the acceleration vector.  |                                 |
| I4 | The position vector of a particle moving in the plane is $r(t) = \langle x(t), y(t) \rangle$ . Find the speed of the particle at time $t$ .                 |                                 |
| 15 | Given the velocity vector $v(t) = \langle x(t), y(t) \rangle$ and position at time $t = 0$ , find the position vector.                                      |                                 |
| 16 | Given the velocity vector $v(t) = \langle x(t), y(t) \rangle$ , when does the particle stop?                                                                |                                 |
| I7 | The position vector of a particle moving in the plane is $r(t) = \langle x(t), y(t) \rangle$ . Find the distance the particle travels from $t_1$ to $t_2$ . |                                 |

### J. Taylor Polynomial Approximations - BC

When you see the words ...

This is what you think of doing

|    | when you see the words                        | This is what you think of doing |
|----|-----------------------------------------------|---------------------------------|
| J1 | Find the <i>n</i> th degree Maclaurin         |                                 |
|    | polynomial to $f(x)$ .                        |                                 |
|    |                                               |                                 |
| J2 | Find the <i>n</i> th degree Taylor polynomial |                                 |
|    | to $f(x)$ centered at                         |                                 |
|    | x = c.                                        |                                 |
| J3 | Use the first-degree Taylor polynomial        |                                 |
|    | to $f(x)$ centered at $x = c$ to              |                                 |
|    | approximate $f(k)$ and determine              |                                 |
|    | whether the approximation is greater          |                                 |
|    | than or less than $f(k)$ .                    |                                 |
| J4 | Given an <i>n</i> th degree Taylor polynomial |                                 |
|    | for $f$ about $x = c$ , find                  |                                 |
|    | $f(c), f'(c), f''(c), \dots, f^{(n)}(c).$     |                                 |
| J5 | Given a Taylor polynomial centered at         |                                 |
|    | c, determine if there is enough               |                                 |
|    | information to determine if there is a        |                                 |
|    | relative maximum or minimum at $x =$          |                                 |
|    | <i>C</i> .                                    |                                 |
| J6 | Given an <i>n</i> th degree Taylor polynomial |                                 |
|    | for $f$ about $x = c$ , find the Lagrange     |                                 |
|    | error bound (remainder).                      |                                 |
| J7 | Given an <i>n</i> th degree Maclaurin         |                                 |
|    | polynomial <i>P</i> for <i>f</i> , find the   |                                 |
|    | f(k)-P(k) .                                   |                                 |

### **K.** Infinite Series - BC

When you see the words ...

This is what you think of doing

|    | vinen you see the words                       | inis is what you think of doing |
|----|-----------------------------------------------|---------------------------------|
| K1 | Given $a_n$ , determine whether the           |                                 |
|    | sequence $a_n$ converges.                     |                                 |
|    |                                               |                                 |
| K2 | Given $a_n$ , determine whether the series    |                                 |
|    | $a_n$ could converge.                         |                                 |
| К3 | Determine whether a series converges.         |                                 |
| K4 | Find the sum of a geometric series.           |                                 |
| K5 | Find the interval of convergence of a series. |                                 |

|     | When you see the words                                                                                                                                           | This is what you think of doing |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| K6  | $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$                                                                                                            |                                 |
| K7  | $f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$                                                                                 |                                 |
| K8  | $f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$                                                                                            |                                 |
| К9  | $f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$                                                                                            |                                 |
| K10 | $f(x) = 1 + x + x^2 + x^3 + + x^n +$                                                                                                                             |                                 |
| K11 | Given a formula for the <i>n</i> th derivative of $f(x)$ . Write the first four terms and the general term for the power series for $f(x)$ centered at $x = c$ . |                                 |
| K12 | Let $S_4$ be the sum of the first 4 terms of an alternating series for $f(x)$ .<br>Approximate $ f(x) - S_4 $ .                                                  |                                 |
| K13 | Write a series for expressions like $e^{x^2}$ .                                                                                                                  |                                 |

### AB/BC Calculus Exam - Review Sheet - Solutions

### A. Precalculus Type problems

When you see the words ... This is what you think of doing

|    | •                                     |                                                                             |
|----|---------------------------------------|-----------------------------------------------------------------------------|
| A1 | Find the zeros of $f(x)$ .            | Set function equal to 0. Factor or use quadratic equation if                |
|    |                                       | quadratic. Graph to find zeros on calculator.                               |
| A2 | Find the intersection of              | Set the two functions equal to each other. Find intersection on             |
|    | f(x) and $g(x)$ .                     | calculator.                                                                 |
| A3 | Show that $f(x)$ is even.             | Show that $f(-x) = f(x)$ . This shows that the graph of f is                |
|    |                                       | symmetric to the <i>y</i> -axis.                                            |
| A4 | Show that $f(x)$ is odd.              | Show that $f(-x) = -f(x)$ . This shows that the graph of f is               |
|    |                                       | symmetric to the origin.                                                    |
| A5 | Find domain of $f(x)$ .               | Assume domain is $(-\infty,\infty)$ . Restrict domains: denominators $\neq$ |
|    |                                       | 0, square roots of only non-negative numbers, logarithm or                  |
|    |                                       | natural log of only positive numbers.                                       |
| A6 | Find vertical asymptotes of $f(x)$ .  | Express $f(x)$ as a fraction, express numerator and denominator             |
|    |                                       | in factored form, and do any cancellations. Set denominator                 |
|    |                                       | equal to 0.                                                                 |
| A7 | If continuous function $f(x)$ has     | This is the Intermediate Value Theorem.                                     |
|    | f(a) < k and $f(b) > k$ , explain why |                                                                             |
|    | there must be a value c such that     |                                                                             |
|    | a < c < b and $f(c) = k$ .            |                                                                             |

#### **B.** Limit Problems

| B1 | Find $\lim_{x \to a} f(x)$ .                                      | Step 1: Find $f(a)$ . If you get a zero in the denominator,                            |
|----|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|    | $x \rightarrow a$                                                 | Step 2: Factor numerator and denominator of $f(x)$ . Do any                            |
|    |                                                                   | cancellations and go back to Step 1. If you still get a                                |
|    |                                                                   | zero in the denominator, the answer is either $\infty$ , $-\infty$ ,                   |
|    |                                                                   | or does not exist. Check the signs of                                                  |
|    |                                                                   | $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ for equality.                  |
| B2 | Find $\lim_{x \to a} f(x)$ where $f(x)$ is a                      | Determine if $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$ by plugging in $a$ to |
|    | piecewise function.                                               | f(x), x < a and $f(x), x > a$ for equality. If they are not equal, the                 |
|    |                                                                   | limit doesn't exist.                                                                   |
| В3 | Show that $f(x)$ is continuous.                                   | Show that 1) $\lim_{x \to a} f(x)$ exists                                              |
|    |                                                                   | 2) $f(a)$ exists                                                                       |
|    |                                                                   | $3) \lim_{x \to a} f(x) = f(a)$                                                        |
| B4 | Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$ . | Express $f(x)$ as a fraction. Determine location of the highest                        |
|    |                                                                   | power:                                                                                 |
|    |                                                                   | Denominator: $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$                |
|    |                                                                   | Both Num and Denom: ratio of the highest power coefficients                            |
|    |                                                                   | Numerator: $\lim_{x\to\infty} f(x) = \pm \infty$ (plug in large number)                |
| В5 | Find horizontal asymptotes of $f(x)$ .                            | $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$                             |

|    | e/                                                                       |                                                                         |
|----|--------------------------------------------------------------------------|-------------------------------------------------------------------------|
| В6 | f(x)                                                                     | Use L'Hopital's Rule:                                                   |
| BC | $\lim_{x \to 0} \frac{f(x)}{g(x)}$                                       |                                                                         |
|    |                                                                          | f(x) $f'(x)$                                                            |
|    | if $\lim_{x\to 0} f(x) = 0$ and $\lim_{x\to 0} g(x) = 0$                 | $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$ |
|    |                                                                          | (x,y)                                                                   |
| B7 | Find $\lim_{x\to 0} f(x) \cdot g(x) = 0(\pm \infty)$                     | Express $g(x) = \frac{1}{1}$ and apply L'Hopital's rule.                |
| BC | $x \rightarrow 0$                                                        | Express $g(x) = \frac{1}{\frac{1}{x^2}}$ and apply L Hopital state.     |
|    |                                                                          | g(x)                                                                    |
| B8 | Find $\lim_{x \to 0} f(x) - g(x) = \infty - \infty$                      | Express $f(x) - g(x)$ with a common denominator and use                 |
| BC |                                                                          | L'Hopital's rule.                                                       |
| В9 | Find $\lim_{x\to 0} f(x)^{g(x)} = 1^{\infty}$ or $0^{0}$ or $\infty^{0}$ | Take the natural log of the expression and apply L'Hopital's            |
| BC | $x \to 0$                                                                | rule, remembering to take the resulting answer and raise e to           |
|    |                                                                          | that power.                                                             |

### C. Derivatives, differentiability, and tangent lines

|     | when you see the words                                                                                                                          | This is what you think of doing                                                                                                                                                                                                                                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1  | Find the derivative of a function using the derivative definition.                                                                              | Find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ or $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$<br>Find $\frac{f(b) - f(a)}{b - a}$<br>Find $f'(a)$                                                                                                                                                                                   |
| C2  | Find the average rate of change of $f$ on $[a, b]$ .                                                                                            | Find $\frac{f(b) - f(\overline{a})}{b - a}$                                                                                                                                                                                                                                                                                       |
| C3  | Find the instantaneous rate of change of $f$ at $x = a$ .                                                                                       | Find $f'(a)$                                                                                                                                                                                                                                                                                                                      |
| C4  | Given a chart of $x$ and $f(x)$ and selected values of $x$ between $a$ and $b$ , approximate $f'(c)$ where $c$ is a value between $a$ and $b$ . | Straddle c, using a value of $k \ge c$ and a value of $h \le c$ . $f'(c) \approx \frac{f(k) - f(h)}{k - h}$                                                                                                                                                                                                                       |
| C5  | Find the equation of the tangent line to $f$ at $(x_1, y_1)$ .                                                                                  | Find slope $m = f'(x_i)$ . Then use point slope equation:<br>$y - y_1 = m(x - x_1)$                                                                                                                                                                                                                                               |
| C6  | Find the equation of the normal line to $f$ at $(x_1, y_1)$ .                                                                                   | $y - y_1 = m(x - x_1)$<br>Find slope $m \perp = \frac{-1}{f'(x_i)}$ . Then use point slope equation:<br>$y - y_1 = m(x - x_1)$                                                                                                                                                                                                    |
| C7  | Find <i>x</i> -values of horizontal tangents to <i>f</i> .                                                                                      | $y - y_1 = m(x - x_1)$<br>Write $f'(x)$ as a fraction. Set numerator of $f'(x) = 0$ .                                                                                                                                                                                                                                             |
| C8  | Find <i>x</i> -values of vertical tangents to <i>f</i> .                                                                                        | Write $f'(x)$ as a fraction. Set denominator of $f'(x) = 0$ .                                                                                                                                                                                                                                                                     |
| С9  | Approximate the value of $f(x_1 + a)$ if you know the function goes through point $(x_1, y_1)$ .                                                | Find slope $m = f'(x_i)$ . Then use point slope equation:<br>$y - y_1 = m(x - x_1)$ . Evaluate this line for $y$ at $x = x_1 + a$ . Note:<br>The closer $a$ is to 0, the better the approximation will be. Also note that using concavity, it can be determine if this value is an over or under-approximation for $f(x_1 + a)$ . |
| C10 | Find the derivative of $f(g(x))$ .                                                                                                              | This is the chain rule. You are finding $f'(g(x)) \cdot g'(x)$ .                                                                                                                                                                                                                                                                  |
| C11 | The line $y = mx + b$ is tangent to the graph of $f(x)$ at $(x_1, y_1)$ .                                                                       | Two relationships are true:  1) The function $f$ and the line share the same slope at $x_1$ : $m = f'(x_1)$ 2) The function $f$ and the line share the same $y$ -value at $x_1$ .                                                                                                                                                 |

| _ |     | ··· == 0 == 5 0 0 == 0 0 0 0 0 0 0 0 0 0 0                   |                                                                                                                        |
|---|-----|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|   | C12 | Find the derivative of the inverse to                        | Follow this procedure:                                                                                                 |
|   |     | f(x) at $x = a$ .                                            | 1) Interchange x and y in $f(x)$ .                                                                                     |
|   |     |                                                              | 2) Plug the <i>x</i> -value into this equation and solve for <i>y</i> (you may need a calculator to solve graphically) |
|   |     |                                                              | 3) Using the equation in 1) find $\frac{dy}{dx}$ implicitly.                                                           |
|   |     |                                                              | 4) Plug the y-value you found in 2) to $\frac{dy}{dx}$                                                                 |
|   | C13 | Given a piecewise function, show it                          | First, be sure that $f(x)$ is continuous at $x = a$ . Then take the                                                    |
|   |     | is differentiable at $x = a$ where the function rule splits. | derivative of each piece and show that $\lim_{x \to a^{-}} f'(x) = \lim_{x \to a^{+}} f'(x)$ .                         |

## **D.** Applications of Derivatives

When you see the words ... This is what you think of doing

| D1 | Find critical values of $f(x)$ .                         | Find and express $f'(x)$ as a fraction. Set both numerator                                                                                                                                                                                                                                                           |
|----|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                          | and denominator equal to zero and solve.                                                                                                                                                                                                                                                                             |
| D2 | Find the interval(s) where $f(x)$ is                     | Find critical values of $f'(x)$ . Make a sign chart to find sign                                                                                                                                                                                                                                                     |
|    | increasing/decreasing.                                   | of $f'(x)$ in the intervals bounded by critical values.                                                                                                                                                                                                                                                              |
|    |                                                          | Positive means increasing, negative means decreasing.                                                                                                                                                                                                                                                                |
| D3 | Find points of relative extrema of                       | Make a sign chart of $f'(x)$ . At $x = c$ where the derivative                                                                                                                                                                                                                                                       |
|    | f(x).                                                    | switches from negative to positive, there is a relative minimum. When the derivative switches from positive to negative, there is a relative maximum. To actually find the point, evaluate $f(c)$ . OR if $f'(c) = 0$ , then if $f''(c) > 0$ , there is a relative minimum at $x = c$ . If $f''(c) < 0$ , there is a |
|    |                                                          | relative maximum at $x = c$ . (2 <sup>nd</sup> Derivative test).                                                                                                                                                                                                                                                     |
| D4 | Find inflection points of $f(x)$ .                       | Find and express $f''(x)$ as a fraction. Set both numerator                                                                                                                                                                                                                                                          |
|    |                                                          | and denominator equal to zero and solve. Make a sign chart of $f''(x)$ . Inflection points occur when $f''(x)$ witches from                                                                                                                                                                                          |
|    |                                                          | positive to negative or negative to positive.                                                                                                                                                                                                                                                                        |
| D5 | Find the absolute maximum or                             | Use relative extrema techniques to find relative max/mins.                                                                                                                                                                                                                                                           |
|    | minimum of $f(x)$ on $[a, b]$ .                          | Evaluate $f$ at these values. Then examine $f(a)$ and $f(b)$ .                                                                                                                                                                                                                                                       |
|    |                                                          | The largest of these is the absolute maximum and the smallest of these is the absolute minimum                                                                                                                                                                                                                       |
| D6 | Find range of $f(x)$ on $(-\infty,\infty)$ .             | Use relative extrema techniques to find relative max/mins.                                                                                                                                                                                                                                                           |
|    |                                                          | Evaluate $f$ at these values. Then examine $f(a)$ and $f(b)$ .                                                                                                                                                                                                                                                       |
|    |                                                          | Then examine $\lim_{x\to\infty} f(x)$ and $\lim_{x\to\infty} f(x)$ .                                                                                                                                                                                                                                                 |
| D7 | Find range of $f(x)$ on $[a, b]$                         | Use relative extrema techniques to find relative max/mins.                                                                                                                                                                                                                                                           |
|    |                                                          | Evaluate $f$ at these values. Then examine $f(a)$ and $f(b)$ .                                                                                                                                                                                                                                                       |
|    |                                                          | Then examine $f(a)$ and $f(b)$ .                                                                                                                                                                                                                                                                                     |
| D8 | Show that Rolle's Theorem holds for $f(x)$ on $[a, b]$ . | Show that $f$ is continuous and differentiable on $[a, b]$ . If $f(a) = f(b)$ , then find some $c$ on $[a, b]$ such that $f'(c) = 0$ .                                                                                                                                                                               |

Stu Schwartz

| D9  | Show that the Mean Value Theorem            | Show that f is continuous and differentiable on $[a, b]$ . If        |
|-----|---------------------------------------------|----------------------------------------------------------------------|
|     | holds for $f(x)$ on $[a, b]$ .              | f(a) = f(b), then find some c on [a, b] such that                    |
|     |                                             | $f'(c) = \frac{f(b) - f(a)}{b - a}$                                  |
| D10 | Given a graph of $f'(x)$ , determine        | Make a sign chart of $f'(x)$ and determine the intervals             |
|     | intervals where $f(x)$ is                   | where $f'(x)$ is positive and negative.                              |
|     | increasing/decreasing.                      |                                                                      |
| D11 | Determine whether the linear                | Find slope $m = f'(x_i)$ . Then use point slope equation:            |
|     | approximation for $f(x_1 + a)$ over-        | $y - y_1 = m(x - x_1)$ . Evaluate this line for y at $x = x_1 + a$ . |
|     | estimates or under-estimates $f(x_1 + a)$ . | If $f''(x_1) > 0$ , f is concave up at $x_1$ and the linear          |
|     |                                             | approximation is an underestimation for $f(x_1 + a)$ .               |
|     |                                             | $f''(x_1) < 0$ , f is concave down at $x_1$ and the linear           |
|     |                                             | approximation is an overestimation for $f(x_1 + a)$ .                |
| D12 | Find intervals where the slope of $f(x)$    | Find the derivative of $f'(x)$ which is $f''(x)$ . Find critical     |
|     | is increasing.                              | values of $f''(x)$ and make a sign chart of $f''(x)$ looking for     |
|     |                                             | positive intervals.                                                  |
| D13 | Find the minimum slope of $f(x)$ on         | Find the derivative of $f'(x)$ which is $f''(x)$ . Find critical     |
|     | [a, b].                                     | values of $f''(x)$ and make a sign chart of $f''(x)$ . Values of     |
|     |                                             | x where $f''(x)$ switches from negative to positive are              |
|     |                                             | potential locations for the minimum slope. Evaluate $f'(x)$          |
|     |                                             | at those values and also $f'(a)$ and $f'(b)$ and choose the          |
|     |                                             | least of these values.                                               |

## E. Integral Calculus

|    | when you see the words                                          | inis is what you think of doing                                                                                                                                                                                                    |
|----|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E1 | Approximate $\int_{a}^{b} f(x) dx$ using left                   | $A = \left(\frac{b-a}{n}\right) [f(x_0) + f(x_1) + f(x_2) + \dots + f(x_{n-1})]$                                                                                                                                                   |
|    | Riemann sums with <i>n</i> rectangles.                          |                                                                                                                                                                                                                                    |
| E2 | Approximate $\int_{a}^{b} f(x) dx$ using right                  | $A = \left(\frac{b-a}{n}\right) [f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n)]$                                                                                                                                                       |
|    | Riemann sums with <i>n</i> rectangles.                          |                                                                                                                                                                                                                                    |
| ЕЗ | Approximate $\int_{a}^{b} f(x) dx$ using midpoint Riemann sums. | Typically done with a table of points. Be sure to use only values that are given. If you are given 7 points, you can only calculate 3 midpoint rectangles.                                                                         |
| E4 | Approximate $\int_{a}^{b} f(x) dx$ using trapezoidal summation. | $A = \left(\frac{b-a}{2n}\right)\left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)\right]$ This formula only works when the base of each trapezoid is the same. If not, calculate the areas of individual trapezoids. |
| E5 | Find $\int_{b}^{a} f(x) dx$ where $a < b$ .                     | $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$                                                                                                                                                                                     |

|           | when you see the words                                                           | This is what you think of doing                                                                                                 |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| E6        | Meaning of $\int_{a}^{x} f(t) dt$ .                                              | The accumulation function – accumulated area under function $f$ starting at some constant $a$ and ending at some variable $x$ . |
| E7        | Given $\int_{a}^{b} f(x) dx$ , find                                              | $\int_{a}^{b} \left[ f(x) + k \right] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} k dx$                                            |
|           | $\int_{a}^{b} \left[ f(x) + k \right] dx.$                                       |                                                                                                                                 |
| E8        | Given the value of $F(a)$ where the antiderivative of $f$ is $F$ , find $F(b)$ . | Use the fact that $\int_{a}^{b} f(x) dx = F(b) - F(a)$ so                                                                       |
|           |                                                                                  | $F(b) = F(a) + \int_{a}^{b} f(x) dx$ . Use the calculator to find the                                                           |
|           |                                                                                  | definite integral.                                                                                                              |
| E9        | Find $\frac{d}{dx} \int_{a}^{x} f(t) dt$ .                                       | $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x).$ The 2nd Fundamental Theorem.                                                        |
| E10       | Find $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt$ .                                    | $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt = f(g(x)) \cdot g'(x).$ The 2nd Fundamental Theorem.                                      |
| E11<br>BC | Find $\int_{0}^{\infty} f(x) dx$ .                                               | $\int_{0}^{\infty} f(x) dx = \lim_{h \to \infty} \int_{0}^{h} f(x) dx = \lim_{h \to \infty} F(h) - F(0).$                       |
| E12<br>BC | Find $\int f(x) \cdot g(x) dx$                                                   | If <i>u</i> -substitution doesn't work, try integration by parts: $\int u \cdot dv = uv - \int v \cdot du$                      |

### F. Applications of Integral Calculus

|    | when you see the words                                                                                    | This is what you think of doing                                                                                                                                                                                       |
|----|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F1 | Find the area under the curve $f(x)$ on the interval $[a, b]$ .                                           | $\int_{a}^{b} f(x) dx$                                                                                                                                                                                                |
| F2 | Find the area between $f(x)$ and $g(x)$ .                                                                 | Find the intersections, $a$ and $b$ of $f(x)$ and $g(x)$ . If $f(x) \ge g(x)$ on $[a,b]$ , then area $A = \int_a^b [f(x) - g(x)] dx$ .                                                                                |
| F3 | Find the line $x = c$ that divides the area under $f(x)$ on $[a, b]$ into two equal areas.                | $\int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx \text{ or } \int_{a}^{b} f(x) dx = 2 \int_{a}^{c} f(x) dx$                                                                                                               |
| F4 | Find the volume when the area under $f(x)$ is rotated about the <i>x</i> -axis on the interval $[a, b]$ . | Disks: Radius = $f(x)$ : $V = \pi \int_{a}^{b} [f(x)]^{2} dx$                                                                                                                                                         |
| F5 | Find the volume when the area between $f(x)$ and $g(x)$ is rotated about the $x$ -axis.                   | Washers: Outside radius = $f(x)$ . Inside radius = $g(x)$ .<br>Establish the interval where $f(x) \ge g(x)$ and the values of $a$ and $b$ , where $f(x) = g(x)$ . $V = \pi \int_{a}^{b} ([f(x)]^{2} - [g(x)]^{2}) dx$ |

|           | When you see the words                                           | This is what you think of doing                                                                                                                           |
|-----------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| F6        | Given a base bounded by $f(x)$ and $g(x)$ on $[a, b]$ the cross  | Base = $f(x) - g(x)$ . Area = base <sup>2</sup> = $[f(x) - g(x)]^2$ .                                                                                     |
|           | sections of the solid perpendicular to                           | Volume = $\int_{a}^{b} [f(x) - g(x)]^{2} dx$                                                                                                              |
|           | the <i>x</i> -axis are squares. Find the volume.                 | $\begin{bmatrix} J & J & J & J & J & J & J & J & J & J $                                                                                                  |
| F7        | Solve the differential equation                                  | Separate the variables: x on one side, y on the other with the                                                                                            |
|           | $\frac{dy}{dx} = f(x)g(y)$                                       | dx and $dy$ in the numerators. Then integrate both sides,                                                                                                 |
|           | dx = f(x)g(y).                                                   | remembering the $+C$ , usually on the $x$ -side.                                                                                                          |
| F8        | $\frac{dy}{dx} = f(x)g(y).$ Find the average value of $f(x)$ on  | $\int_{a}^{b} f(x) dx$                                                                                                                                    |
|           |                                                                  | $F = \frac{a}{a}$                                                                                                                                         |
|           |                                                                  | b-a                                                                                                                                                       |
| F9        | Find the average rate of change of                               | $\int \frac{d}{dt} \int_{0}^{t_2} F'(x) dx$                                                                                                               |
|           | $F'(x)$ on $[t_1,t_2]$ .                                         | $\int_{t_1}^{T} \frac{dx}{t_1} \int_{t_2}^{T} \frac{dx}{t_2} F'(t_2) - F'(t_1)$                                                                           |
|           |                                                                  | $F_{avg} = \frac{a}{b-a}$ $\frac{d}{dt} \int_{t_1}^{t_2} F'(x) dx$ $\frac{t_2 - t_1}{t_2 - t_1} = \frac{F'(t_2) - F'(t_1)}{t_2 - t_1}$                    |
| F10       | y is increasing proportionally to y.                             | $\frac{dy}{dt} = ky \text{ which translates to } y = Ce^{kt}$                                                                                             |
|           |                                                                  | $\frac{d}{dt} = ky$ which translates to $y = Ce$                                                                                                          |
| F11       | Given $\frac{dy}{dx}$ , draw a slope field.                      | Use the given points and plug them into $\frac{dy}{dx}$ , drawing little                                                                                  |
|           | dx                                                               | ax                                                                                                                                                        |
| F12       | - dv                                                             | lines with the calculated slopes at the point.                                                                                                            |
| BC        | Find $\int \frac{dx}{ax^2 + bx + c}$                             | Factor $ax^2 + bx + c$ into non-repeating factors to get                                                                                                  |
|           | ax + bx + c                                                      | $\int \frac{dx}{(mx+n)(px+q)}$ and use Heaviside method to create                                                                                         |
|           |                                                                  | partial fractions and integrate each fraction.                                                                                                            |
| F13       | Use Euler's method to approximate                                | $dy = \frac{dy}{dx}(\Delta x), \ y_{\text{new}} = y_{\text{old}} + dy$                                                                                    |
| BC        | f(1.2) given a formula for                                       | $dy - \frac{dy}{dx}(\Delta x), \ y_{\text{new}} - y_{\text{old}} + dy$                                                                                    |
|           | $\frac{dy}{dx}$ , $(x_0, y_0)$ and $\Delta x = 0.1$              |                                                                                                                                                           |
| F1.4      | un un                                                            |                                                                                                                                                           |
| F14<br>BC | Is the Euler's approximation an over-<br>or under-approximation? | Look at sign of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in the interval. This gives                                                                       |
| BC        | or under-approximation:                                          |                                                                                                                                                           |
|           |                                                                  | increasing/decreasing and concavity information. Draw a picture to ascertain the answer.                                                                  |
| F15       | A population <i>P</i> is increasing                              | dP $P(C, p)$                                                                                                                                              |
| BC        | logistically.                                                    | $\frac{d}{dt} = \kappa P(C - P)$ .                                                                                                                        |
| F16       | Find the carrying capacity of a                                  | $dP = kP(C - P) = 0 \Rightarrow C = P$                                                                                                                    |
| BC        | population growing logistically.                                 | $\frac{dP}{dt} = kP(C - P).$ $\frac{dP}{dt} = kP(C - P) = 0 \Rightarrow C = P.$ $\frac{dP}{dt} = kP(C - P) \Rightarrow \text{Set } \frac{d^2P}{dt^2} = 0$ |
| F17       | Find the value of $P$ when a population                          | $\frac{dP}{dt} = kP(C - P) \Rightarrow \text{Set } \frac{d^2P}{dt} = 0$                                                                                   |
| BC        | growing logistically is growing the                              | $\int dt \int dt^{2} dt^{2}$                                                                                                                              |
|           | fastest.                                                         |                                                                                                                                                           |
| F18       | Given continuous $f(x)$ , find the arc                           | $L = \int_{a}^{b} \sqrt{1 + \left[ f'(x) \right]^2} dx$                                                                                                   |
| BC        | length on $[a, b]$                                               | $\begin{bmatrix} D - \int_{a} \sqrt{1 + \left[ \int_{a} \sqrt{\lambda} \right]} d\lambda \\ a \end{bmatrix}$                                              |
|           | ·                                                                |                                                                                                                                                           |

Stu Schwartz

## **G. Particle Motion and Rates of Change**

|     | wnen you see the words                                                                                                               | i his is what you think of doing                                                                                                                                                                                                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G1  | Given the position function $s(t)$ of a particle moving along a straight line, find the velocity and acceleration.                   | $v(t) = s'(t) \qquad a(t) = v'(t) = s''(t)$                                                                                                                                                                                                |
| G2  | Given the velocity function $v(t)$ and $s(0)$ , find $s(t)$ .                                                                        | $s(t) = \int v(t) dt + C$ . Plug in $s(0)$ to find C.                                                                                                                                                                                      |
| G3  | Given the acceleration function $a(t)$ of a particle at rest and $s(0)$ , find $s(t)$ .                                              | $v(t) = \int a(t) dt + C_1. \text{ Plug in } v(0) = 0 \text{ to find } C_1.$ $s(t) = \int v(t) dt + C_2. \text{ Plug in } s(0) \text{ to find } C_2.$                                                                                      |
| G4  | Given the velocity function $v(t)$ , determine if a particle is speeding up or slowing down at $t = k$ .                             | Find $v(k)$ and $a(k)$ . If both have the same sign, the particle is speeding up. If they have different signs, the particle is slowing down.                                                                                              |
| G5  | Given the position function $s(t)$ , find the average velocity on $[t_1, t_2]$ .                                                     | Avg. vel. = $\frac{s(t_2) - s(t_1)}{t_2 - t_1}$<br>Inst. vel. = $s'(k)$ .                                                                                                                                                                  |
| G6  | Given the position function $s(t)$ , find the instantaneous velocity at $t = k$ .                                                    | Inst. vel. = $s'(k)$ .                                                                                                                                                                                                                     |
| G7  | Given the velocity function $v(t)$ on $[t_1,t_2]$ , find the minimum acceleration of a particle.                                     | Find $a(t)$ and set $a'(t) = 0$ . Set up a sign chart and find critical values. Evaluate the acceleration at critical values and also $t_1$ and $t_2$ to find the minimum.                                                                 |
| G8  | Given the velocity function $v(t)$ , find the average velocity on $[t_1, t_2]$ .                                                     | Avg. vel. = $\frac{\int_{t_1}^{t_2} v(t) dt}{t_2 - t_1}$ Displacement = $\int_{t_1}^{t_2} v(t) dt$                                                                                                                                         |
| G9  | Given the velocity function $v(t)$ , determine the difference of position of a particle on $[t_1, t_2]$ .                            | Displacement = $\int_{t_1}^{t_2} v(t) dt$                                                                                                                                                                                                  |
| G10 | Given the velocity function $v(t)$ , determine the distance a particle travels on $[t_1,t_2]$ .                                      | Distance = $\int_{t_1}^{t_2}  v(t)  dt$                                                                                                                                                                                                    |
| G11 | Calculate $\int_{t_1}^{t_2}  v(t)  dt$ without a calculator.                                                                         | Set $v(t) = 0$ and make a sign charge of $v(t) = 0$ on $[t_1, t_2]$ . On intervals $[a, b]$ where $v(t) > 0$ , $\int_a^b  v(t)  dt = \int_a^b v(t) dt$<br>On intervals $[a, b]$ where $v(t) < 0$ , $\int_a^b  v(t)  dt = \int_b^a v(t) dt$ |
| G12 | Given the velocity function $v(t)$ and $s(0)$ , find the greatest distance of the particle from the starting position on $[0,t_1]$ . | Generate a sign chart of $v(t)$ to find turning points.<br>$s(t) = \int v(t) dt + C$ . Plug in $s(0)$ to find $C$ .<br>Evaluate $s(t)$ at all turning points and find which one gives the maximum distance from $s(0)$ .                   |

| When you see the words | This is what you think of doing |
|------------------------|---------------------------------|
|                        |                                 |

| G13 | The volume of a solid is changing at the rate of                                                                      | $\frac{dV}{dt} = \dots$                                                                                                                         |
|-----|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| G14 | The meaning of $\int_a^b R'(t) dt$ .                                                                                  | This gives the accumulated change of $R(t)$ on $[a, b]$ . $\int_{a}^{b} R'(t) dt = R(b) - R(a) \text{ or } R(b) = R(a) + \int_{a}^{b} R'(t) dt$ |
| G15 | Given a water tank with $g$ gallons initially, filled at the rate of $F(t)$ gallons/min and emptied at the rate       | a) $g + \int_{0}^{m} \left[ F(t) - E(t) \right] dt$                                                                                             |
|     | of $E(t)$ gallons/min on $[t_1, t_2]$ a)<br>The amount of water in the tank at $t = m$ minutes. b) the rate the water | b) $\frac{d}{dt} \int_{0}^{m} \left[ F(t) - E(t) \right] dt = F(m) - E(m)$<br>c) set $F(m) - E(m) = 0$ , solve for $m$ , and evaluate           |
|     | amount is changing at $t = m$ minutes<br>and c) the time $t$ when the water in<br>the tank is at a minimum or         | $g + \int_{0}^{m} [F(t) - E(t)] dt$ at values of $m$ and also the endpoints.                                                                    |
|     | maximum.                                                                                                              |                                                                                                                                                 |

## $\boldsymbol{H.\ Parametric\ and\ Polar\ Equations\ -\ BC}$

|    | when you see the words                                                               | This is what you think of doing                                                                                                                                                          |
|----|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H1 | Given $x = f(t), y = g(t)$ , find $\frac{dy}{dx}$ .                                  | $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$                                                                                                                                    |
| H2 | Given $x = f(t), y = g(t)$ , find $\frac{d^2y}{dx^2}$ .                              | $x = f(t), y = g(t), \text{ find } \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$                            |
| НЗ | Given $x = f(t), y = g(t)$ , find arc length on $[t_1, t_2]$ .                       | $L = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$                                                                                             |
| H4 | Express a polar equation in the form of $r = f(\theta)$ in parametric form.          | $x = r\cos\theta = f(\theta)\cos\theta$ $y = r\sin\theta = f(\theta)\sin\theta$                                                                                                          |
| Н5 | Find the slope of the tangent line to $r = f(\theta)$ .                              | $x = r \cos \theta$ $y = r \sin \theta \Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$                                                                        |
| Н6 | Find horizontal tangents to a polar curve $r = f(\theta)$ .                          | $x = r\cos\theta$ $y = r\sin\theta$<br>Find where $r\sin\theta = 0$ when $r\cos\theta \neq 0$                                                                                            |
| H7 | Find vertical tangents to a polar curve $r = f(\theta)$ .                            | $x = r\cos\theta$ $y = r\sin\theta$<br>Find where $r\cos\theta = 0$ when $r\sin\theta \neq 0$                                                                                            |
| Н8 | Find the area bounded by the polar curve $r = f(\theta)$ on $[\theta_1, \theta_2]$ . | $A = \frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 d\theta = \frac{1}{2} \int_{\theta_1}^{\theta_2} \left[ f(\theta) \right]^2 d\theta$                                                     |
| Н9 | Find the arc length of the polar curve $r = f(\theta)$ on $[\theta_1, \theta_2]$ .   | $s = \int_{\theta_1}^{\theta_2} \sqrt{\left[f(\theta)\right]^2 + \left[f'(\theta)\right]^2} d\theta = \int_{\theta_1}^{\theta_2} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$ |

### I. Vectors and Vector-valued functions - BC

### When you see the words ...

This is what you think of doing

|    | when you see the words                                                                                                                                      | This is what you think of doing                                                                    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| I1 | Find the magnitude of vector $v\langle v_1, v_2 \rangle$ .                                                                                                  | $  v   = \sqrt{v_1^2 + v_2^2}$                                                                     |
| I2 | Find the dot product: $\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle$                                                                             | $\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle = u_1 v_1 + u_2 v_2$                      |
| I3 | The position vector of a particle moving in the plane is $r(t) = \langle x(t), y(t) \rangle$ . Find a) the velocity vector and b) the acceleration vector.  | a) $v(t) = \langle x'(t), y'(t) \rangle$<br>b) $a(t) = \langle x''(t), y''(t) \rangle$             |
| I4 | The position vector of a particle moving in the plane is $r(t) = \langle x(t), y(t) \rangle$ . Find the speed of the particle at time $t$ .                 | Speed = $  v(t)   = \sqrt{[x'(t)]^2 + [y'(t)]^2}$ - a scalar                                       |
| 15 | Given the velocity vector $v(t) = \langle x(t), y(t) \rangle$ and position at time $t = 0$ , find the position vector.                                      | $s(t) = \int x(t) dt + \int y(t) dt + C$ Use $s(0)$ to find $C$ , remembering that it is a vector. |
| I6 | Given the velocity vector $v(t) = \langle x(t), y(t) \rangle$ , when does the particle stop?                                                                | $v(t) = 0 \Rightarrow x(t) = 0$ AND $y(t) = 0$                                                     |
| I7 | The position vector of a particle moving in the plane is $r(t) = \langle x(t), y(t) \rangle$ . Find the distance the particle travels from $t_1$ to $t_2$ . | Distance = $\int_{t_1}^{t_2} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$                                      |

### J. Taylor Polynomial Approximations - BC

#### When you see the words ...

This is what you think of doing

|    | when you see the words                                              | This is what you think of doing                                       |
|----|---------------------------------------------------------------------|-----------------------------------------------------------------------|
| J1 | Find the <i>n</i> th degree Maclaurin polynomial to $f(x)$ .        | $P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 +$                     |
|    |                                                                     | $\frac{f'''(0)}{3!}x^3 + + \frac{f^{(n)}(0)}{n!}x^n$                  |
| J2 | Find the <i>n</i> th degree Taylor polynomial to $f(x)$ centered at | $P_n(x) = f(c) + f'(c)(x - c) + \frac{f''(c)(x - c)^2}{2!} +$         |
|    | x = c.                                                              | $\frac{f'''(c)(x-c)^3}{3!} + + \frac{f^{(n)}(c)(x-c)^n}{n!}$          |
| J3 | Use the first-degree Taylor                                         | Write the first-degree TP and find $f(k)$ . Use the signs of          |
|    | polynomial to $f(x)$ centered at                                    | f'(c) and $f''(c)$ to determine increasing/decreasing and             |
|    | x = c to approximate $f(k)$ and                                     | concavity and draw your line (1 <sup>st</sup> degree TP) to determine |
|    | determine whether the                                               | whether the line is under the curve (under-approximation) or          |
|    | approximation is greater than or less                               | over the curve (over-approximation).                                  |
|    | than $f(k)$ .                                                       |                                                                       |

|  | When you see the words | This is what you think of doing |
|--|------------------------|---------------------------------|
|--|------------------------|---------------------------------|

| J4 | Given an <i>n</i> th degree Taylor                                                                  | f(c) will be the constant term in your Taylor polynomial (TP)                     |
|----|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|    | polynomial for $f$ about $x = c$ , find                                                             | f'(c) will be the coefficient of the x term in the TP.                            |
|    | $f(c), f'(c), f''(c), \dots, f^{(n)}(c)$                                                            | $\frac{f''(c)}{2!}$ will be the coefficient of the $x^2$ term in the TP.          |
|    |                                                                                                     | $\frac{f^{(n)}(c)}{n!}$ will be the coefficient of the $x^n$ term in the TP.      |
| J5 | Given a Taylor polynomial centered                                                                  | If there is no first-degree $x$ -term in the TP, then the value of $c$            |
|    | at c, determine if there is enough                                                                  | about which the function is centered is a critical value. Thus                    |
|    | information to determine if there is                                                                | the coefficient of the $x^2$ term is the second derivative divided                |
|    | a relative maximum or minimum at                                                                    | by 2! Using the second derivative test, we can tell whether                       |
|    | x = c.                                                                                              | there is a relative maximum, minimum, or neither at $x = c$ .                     |
| J6 | Given an <i>n</i> th degree Taylor polynomial for $f$ about $x = c$ , find the Lagrange error bound | $R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!}  x-c ^{n+1}.$ The value of z is some number |
|    | (remainder).                                                                                        | between x and c. $f^{(n+1)}(z)$ represents the $(n+1)^{st}$ derivative of         |
|    | (                                                                                                   | z. This usually is given to you.                                                  |
| J7 | Given an <i>n</i> th degree Maclaurin                                                               | This is looking for the Lagrange error – the difference between                   |
|    | polynomial $P$ for $f$ , find the                                                                   | the value of the function at $x = k$ and the value of the TP at                   |
|    | f(k)-P(k) .                                                                                         | x = k.                                                                            |

### **K.** Infinite Series - BC

|    | when you see the words                | This is what you think of doing                                                                                    |
|----|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| K1 | Given $a_n$ , determine whether the   | $a_n$ converges if $\lim_{n \to \infty} a_n$ exists.                                                               |
|    | sequence $a_n$ converges.             | 11-50                                                                                                              |
| K2 | Given $a_n$ , determine whether the   | If $\lim_{n\to\infty} a_n = 0$ , the series could converge. If $\lim_{n\to\infty} a_n \neq 0$ , the                |
|    | series $a_n$ could converge.          | series cannot converge. ( <i>n</i> th term test).                                                                  |
| K3 | Determine whether a series            | Examine the <i>n</i> th term of the series. Assuming it passes the <i>n</i> th                                     |
|    | converges.                            | term test, the most widely used series forms and their rule of                                                     |
|    |                                       | convergence are:                                                                                                   |
|    |                                       | Geometric: $\sum_{n=0}^{\infty} ar^n$ - converges if $ r  < 1$                                                     |
|    |                                       | <i>p</i> -series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ - converges if $p > 1$                                       |
|    |                                       | Alternating: $\sum_{n=1}^{\infty} (-1)^n a_n - \text{converges if } 0 < a_{n+1} < a_n$                             |
|    |                                       | Ratio: $\sum_{n=0}^{\infty} a_n - \text{converges if } \lim_{n \to \infty} \left  \frac{a_{n+1}}{a_n} \right  < 1$ |
| K4 | Find the sum of a geometric series.   | $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$                                                                         |
| K5 | Find the interval of convergence of a | If not given, you will have to generate the <i>n</i> th term formula.                                              |
|    | series.                               | Use a test (usually the ratio test) to find the interval of                                                        |
|    |                                       | convergence and then check out the endpoints.                                                                      |

|     | wnen you see the words                                                                                                                                                                                                                                                        | I his is what you think of doing                                                                                                                                                                                                                                                                                                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K6  | $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$                                                                                                                                                                                                                         | The harmonic series – divergent.                                                                                                                                                                                                                                                                                                                       |
| K7  | $f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$ $f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ $f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$ $f(x) = 1 + x + x^2 + x^3 + \dots + x^n + \dots$ | $f(x) = e^x$                                                                                                                                                                                                                                                                                                                                           |
| K8  | $f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$                                                                                                                                                                                                         | $f(x) = \sin x$                                                                                                                                                                                                                                                                                                                                        |
| K9  | $f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$                                                                                                                                                                                                         | $f(x) = \cos x$                                                                                                                                                                                                                                                                                                                                        |
| K10 | $f(x) = 1 + x + x^2 + x^3 + + x^n +$                                                                                                                                                                                                                                          | $f(x) = \frac{1}{1-x}$ Convergent: $(-1,1)$                                                                                                                                                                                                                                                                                                            |
| K11 | Given a formula for the $n$ th derivative of $f(x)$ . Write the first four terms and the general term for the power series for $f(x)$ centered at $x = c$ .                                                                                                                   | $f(x) = \frac{1}{1-x}  \text{Convergent} : (-1,1)$ $f(x) = f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2}{2!} + \frac{f'''(c)(x-c)^3}{3!} + \dots + \frac{f^{(n)}(c)(x-c)^n}{n!} + \dots$                                                                                                                                                                    |
| K12 | Let $S_4$ be the sum of the first 4 terms of an alternating series for $f(x)$ . Approximate $ f(x) - S_4 $ .                                                                                                                                                                  | This is the error for the 4 <sup>th</sup> term of an alternating series which is simply the 5 <sup>th</sup> tern. It will be positive since you are looking for an absolute value.                                                                                                                                                                     |
| K13 | Write a series for expressions like $e^{x^2}$ .                                                                                                                                                                                                                               | Rather than go through generating a Taylor polynomial, use the fact that if $f(x) = e^x$ , then $f(x^2) = e^{x^2}$ . So $f(x) = e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \dots$ and $f(x^2) = e^{x^2} = 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{3!} + \frac{x^8}{4!} + \dots + \frac{x^{2n}}{n!} + \dots$ |