Chapter 9

Day 8

Solve Quadratic Equations by Graphing

KEY CONCEPT

For Your Notebook

Graph of Intercept Form y = a(x - p)(x - q)

Characteristics of the graph of y = a(x - p)(x - q):

- The x-intercepts are p and q.
- The axis of symmetry is halfway between (p, 0) and (q, 0). So, the axis of symmetry is $x = \frac{p+q}{2}$.
- The parabola opens up if a > 0 and opens down if a < 0.

Ex:
$$(x+2)(x+8)=0$$

Ex: Graph y = -(x+1)(x-5)

A quadratic equation is an equation that can be written in the **standard** form $ax^2 + bx + c = 0$ where $a \neq 0$.

Solve $x^2 - 2x = 3$ by graphing.

$$\chi^{2} - 2x + 3 = 0$$

$$\chi^{2} - 2x + 3 = 4$$

$$\chi^{2} + 3 = 4$$

$$\chi^{3} + 3 = 4$$

$$\chi^{4} + 3 = 4$$

$$\chi^$$

Solve $-x^2 + 2x = 1$ by graphing.

Solve $x^2 + 7 = 4x$ by graphing.

KEY CONCEPT

For Your Notebook

Number of Solutions of a Quadratic Equation

A quadratic equation has **two solutions** if the graph of its related function has **two x-intercepts**.

A quadratic equation has one solution if the graph of its related function has one x-intercept.

A quadratic equation has **no real solution** if the graph of its related function has **no** *x***-intercepts**.

Find the zeros of $f(x) = x^2 + 6x - 7$.

Approximate the zeros of $f(x) = x^2 + 4x + 1$ to the nearest tenth.

FUNCTION VALUES

The function value that is closest to 0 indicates the x-value that best approximates a zero of the function.

x	-3.9	-3.8	-3.7	-3.6	-3.5	-3.4	-3.3	-3.2	-3.1
f(x)	0.61	0.24	-0.11	-0.44	-0.75	-1.04	-1.31	-1.56	-1.79
x	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1

SPORTS An athlete throws a shot put with an initial vertical velocity of 40 feet per second as shown.

- a. Write an equation that models the height h (in feet) of the shot put as a function of the time t (in seconds) after it is thrown.
- b. Use the equation to find the time that the shot put is in the air.

 Use the initial vertical velocity and the release height to write a vertical motion model.

$$h = -16t^2 + vt + s$$

Vertical motion model

